ابزار امتیاز دهی

آبان 90 - علمی
سفارش تبلیغ
صبا ویژن

علمی

در یک نگاه کوچک مشخص می شود که گوشی های همراه تمامی تکنولوژی های لازم برای شیوع انواع ویروس ها را در سال 2005 دارا می باشند. آنها دارای پردازنده های مدرن ، تکنولوژی بیسیم بلوتوث هستند و قابلیت انتقال داده از درون یک شبکه را دارا می باشند. این نقل و انتقال با زبان Java بسیار ساده‌تر شده است.
با کمی تخمین، بیش از نیمی از این گوشی های باهوش دارای سیستم های عامل Symbian می باشند زیرا که بسیاری از رهبران این تکنولوژی همچون نوکیا ، اریکسون و دیگر شرکت های بزرگ ، برای کسب محبوبیت خود از این سیستم عامل استفاده می کنند.
طبق آمارهای جهانی، در حال حاضر بیش از 32 درصد از جمعیت جهان دارای یک گوشی موبایل می باشند یعنی چیزی در حدود 5/1 میلیارد نفر و همین امر باعث می شود که همه گیری ویروس های موبایل امری واقعی به نظر برسد. اما در سال 2005 اوضاع به چه صورت خواهد شد ؟
اولین ویروس موبایل برای سیستم عامل های Symbian در ژوئن 2004 ظاهر شد که ویروسی بی ضرر بود. نسخه بعدی دارای خصیصه های قابل توجهی بود ولی باز هم یک ویروس کم خطر بود. هر دو آنها از تکنولوژی بلوتوث برای انتشار خود استفاده می کردند. بلوتوث، یک تکنولوژی بزرگی است برای ارتباط ابزارهای کوچکی که نزدیک به هم می باشند . اما این بزرگی ها، مضراتی را نیز به همراه خود دارد : این پروتکل دارای برد کوتاهی می باشد. اما با همین برد کوتاه بلوتوث به شما اجازه می دهد موبایل ، PDA و کامپیوتر کیفی خود را به پرینترها متصل کنید و همچنین داده های خود را در طول یک شبکه انتقال دهید.
انتشار ویروس های موبایل بسیار جالب می باشند، زیرا که مانند ویروس های انسانی با نزدیک شدن افراد به یکدیگر منتشر می گردند! اما این نزدیکی انتشار ویروس را کمی محدود می کند. اما گونه های دیگر آنها باهوش تر شده اند زیرا که از تکنولوژی GPRS برای انتشار خود استفاده می کنند و بعد از آن بلافاصله به دفترچه آدرس موبایل دسترسی پیدا کرده و خودش را در صورت امکان بدانها ارسال می کنند.
اما ویروس های موبایل چه هستند و چه قابلیت هایی دارند؟ این موضوع نیز هنوز مقداری قابل شک و تردید می باشد. زیرا که آنها از کارهایی همچون شماره گیری از یک تا نهصد شماره در روز و یا کارهایی از قبیل اضافه کردن خرید های بی مورد و بعضا بسیار هنگفت به سبد کالای شماره کاربر، آنها را مورد تهدید قرار می دهند.
البته این موارد نیز در کشورهای مختلف متفاوت می باشد . مثلا در کشورهای آسیایی که هنوز اینگونه تکنولوژی ها در حال تست می باشند، حملات ویروس های موبایل بسیار کمتر از کشورهای اروپایی و ایالات متحده می باشد.
باید گفت که در جایی که تجارت الکترونیکی وجود دارد حتما خطرات اینترنتی و ویروس ها نیز فعالیت می‌کنند. اگر این تجارت با تلفن های موبایل ، همراه باشد ، برای بسیاری از تجار از دست دادن و یا از کار افتادن این دستگاه کوچک قدرتمند، بسیار خسارت بار می تواند باشد.
اگرچه در حال حاضر، تهدیدات خطرناکی این صنعت نوپا را تهدید نمی کند ، اما پیشگویی ها حاکی از آن است که باید در آینده ای نه چندان دور برای امنیت این دستگاه کوچک ، چاره ای اندیشید و راهکار ارائه داد. همچنانکه در گذشته در سیستم های رومیزی این اتفاق افتاد در موبایل ها نیز همراه با پیشرفت سیستم های عامل آنها و نزدیک تر شدن تکنولوژی های آن به یکدیگر ، ویروس ها و کرم های موبایل نیز پیشرفت خواهند کرد و بسیار سریع تر از حال حاضر خود را منتشر خواهند کرد.
شاید یکی از دلایلی که ویروس های موبایل فعلی قادر به پخش گسترده خود نیستند این است که گونه های مختلفی از سیستم های عامل ، شبکه ها و تکنولوژی های مختلف برای موبایل ها وجود دارد که مانع از گسترش ویروس ها می شود یعنی درست برخلاف مشکلی که در حال حاضر کاربران اینترنت با آن مواجهه هستند: شبکه ای یکسان با سیستم های مشابه ! چیزی که شاید در آینده موبایل ها نیز با آن مواجهه شوند !
با وجود آخرین 30 ویروس موبایل برای سیستم عاملSymbian ، روزی فرا خواهد رسید که کاربران مشاهده می کنند که چگونه این ویروس ها می توانند به راحتی و در کمترین زمان ممکن، به کمربند های چرمی آنها نفوذ کنند !


ارسال شده در توسط vahdi

کوره های القایی در مقایسه با کوره های سوخت فسیلی دارای مزایای فراوانی از جمله دقت بیشتر ، تمیزی و تلفات گرمایی کمتر و ... است . همچنین در کوره هایی که در آنها از روشهای دیگر ، غیر القاء استفاده می شود ، اندازه کوره بسیار بزرگ بوده و در زمان راه اندازی و خاموش کردن آنها طولانی است . عبور جریان از یک سیم پیچ و استفاده از میدان مغناطیسی برای ایجاد جریان در هسته سیم پیچ ، اساس کار کوره های القایی را تشکیل می دهد . در این کوره ها از حرارت ایجاد شده توسط تلفات فوکو و هیسترزیس برای ذوب فلزات یا هرگونه عملیات حرارتی استفاده می شود
کوره های القایی در مقایسه با کوره های سوخت فسیلی دارای مزایای فراوانی از جمله دقت بیشتر ، تمیزی و تلفات گرمایی کمتر و ... است . همچنین در کوره هایی که در آنها از روشهای دیگر ، غیر القاء استفاده می شود ، اندازه کوره بسیار بزرگ بوده و در زمان راه اندازی و خاموش کردن آنها طولانی است . عبور جریان از یک سیم پیچ و استفاده از میدان مغناطیسی برای ایجاد جریان در هسته سیم پیچ ، اساس کار کوره های القایی را تشکیل می دهد . در این کوره ها از حرارت ایجاد شده توسط تلفات فوکو و هیسترزیس برای ذوب فلزات یا هرگونه عملیات حرارتی استفاده می شود .
نخستین کوره القایی که مورد بهره برداری قرار گرفت از شبکه اصلی قدرت تغذیه میشد و هیچگونه تبدیل فرکانسی صورت نمی گرفت . با توجه به اینکه افزایش فرکانس تغذیه کوره موجب کاهش ابعاد آن و بالا رفتن توان (تلفات) می شود ، برای رسیدن به این هدف ، در ابتدا منابع تغذیه موتور ژنراتوری مورد استفاده واقع گردید . هر چند با این منابع می توان فرکانس را تا حدودی بالا برد ، ولی محدودیت فرکانس و عدم قابلیت تغییر آن و در نهایت عدم تطبیق سیستم تغذیه با کوره ، دو عیب اساسی این سیستمها به شمار میرفت . با توجه به این معایب ورود عناصر نیمه هادی به حیطه صنعت موجب گردید منابع تغذیه استاتیک جایگزین منابع قبلی شوند .

در سال 1831 میلادی مایکل فارادی (Faraday) با ارائه این مطلب که اگر از سیم پیچ اولیه ای جریان متغیری عبور کند ، در سیم پیچ ثانویه مجاورش نیز جریان القاء میشود ، تئوری گرمایش القایی را بنا نهاد . علت اصلی این پدیده القاء ، تغییرات شار در مدار بسته ثانویه است که از جریان متناوب اولیه ناشی میشود . نزدیک به یکصد سال این اصل در موتورها، ژنراتورها ، ترانسفورماتور ها ، وسایل ارتباط رادیویی و ... بکار گرفته می شد و هر اثر گرمایی در مدارهای مغناطیسی به عنوان یک عنصر نا مطلوب شناخته می شد . در راستای مقابله با اثرات حرارتی در مدارهای مغناطیسی و الکتریکی از سوی مهندسین گامهای موثری برداشته شد . آنها توانستند با مورق نمودن هستهِ مغناطیسی موتورها و ترانسفورماتورها ، جریان فوکو(Eddy Current) را که عامل تلفات حرارتی بود مینیمم نمایند .
به دنبال آزمایشات فارادی ، قوانین متعددی پیشنهاد شد . قوانین لنز (Lenz) و نیومن (Neuman) نشان دادند که جریان القاء‌ شده با شار القایی مخالفت کرده و به طور مستقیم با فرکتنس متناسب می باشد . فوکو (Focault) در سال 1863 در مقاله ای تحت عنوان "القاء جریان در هسته" (The Induction Of Current in Cores) که توسط هویساید (Heviside) منتشر گردید نظریه ای راجع به جریان فوکو ارائه داد و در رابطه با انتقال انرژی از یک کویل به یک هسته توپر بحث نمود . علاوه بر افراد فوق ، تامسون (Thomson) نیز در ارائه نظریه گرمایش از طریق القاء سهم بسزایی داشت .

در اواخر قرن نوزدهم استفاده از تلفات فوکو و هیسترزیس به عنوان منبع گرمایش القائی از طرف مهندسین مطرح شد . همچنین در اوایل قرن اخیر در کشورهای فرانسه ، سوئد و ایتالیا بر اساس استفاده از خازنهای جبران کننده توان راکتیو پیشنهاداتی برای کوره های القایی بدون هسته ارائه شد . در این پیشنهادات بیشتر ذوب فلزات در فرکانسهای میانی مورد نظر بود .
دکتر نورث روپ (Northrup) ایده کوره با فرکانس میانی را برای موارد صنعتی گسترش داد . در روزهای نخستین ، بر اثر نبود امکانات از جمله خازنهای با ظرفیت کافی و قابل اطمینان ، توسعه و پیشرفت متوقف شد . بعدها در سال 1927 کمپانی کوره های الکتریکی (Electrical Furnace CO. [EFCO.]) نخستین کوره الکتریکی با فرکانس میانی را در شفیلد انگلستان و به منظور آهنگری و گرمادهی موضعی فلزات جهت اتصال به یکدیگر ، نصب کرد . بعد از این ، تعداد و اندازه این کوره ها رو به افزایش گذاشته است . لازم به ذکر است که مزیتهای دیگر کوره های القایی همچون دقت زیاد برای گرم کردن تا عمق مورد نظر و حرارت دادن نواحی سطحی در طی پیشرفتهای بعدی ( در سالهای جنگ جهانی دوم ) بیشتر آشکار شد . در گرمایش القایی عدم نیاز به منبع خارجی گرم کننده ، تلفات گرمایی کمتر شده و تمیزی شرایط کار تامین میگردد . در این روش همچنین نیازی به تماس فیزیکی بار و کویل نبوده و علاوه بر این چگالی توان بالا در مدت زمان گرمایش کم به آسانی قابل دسترس می باشد .

در ابتدا کوره های القایی مستقیماً از شبکه قدرت تغذیه می شدند که بنوبه خود گام موفقی در استفاده از توان الکتریکی جهت عملیات حرارتی بحساب میآمد .
از آنجائیکه تلفات فوکو و هیسترزیس با فرکانس نسبت مستقیم دارند و اینکه ابعاد کویل کوره با بالا رفتن فرکانس کاهش می یابد ، مهندسین به فکر تغذیه کوره در فرکانسهای بالاتر از فرکانس شبکه قدرت افتادند . اولین قدم در این راه استفاده از فرکانسهای دو برابر و سه برابر که از هارمونیکهای دوم و سوم بدست می آمدند ، بود .
این هارمونیکها بر خلاف طبیعت مخرب خود در این نوع کاربرد سودمند تشخیص داده شدند . پائین بودن راندمان در استفاده از هارمونیکهای فوق موجب گردید طراحان روش دیگری را مورد استفاده قرار دهند در این مرحله سیستم موتورـژنراتور توسعه یافت که با استفاده از این سیستم توانستند فرکانس تغذیه را تا صدها هرتز افزایش دهند . در کوره های القایی افزایش فرکانس باعث کاهش عمق نفوذ جریان القایی میگردد لذا در عملیات حرارتی سطحی که سختکاری سطح فلز ، مورد نظر می باشد از کوره های القایی با فرکانس بالا استفاده می شود . با ورود عناصر نیمه هادی مانند تریستورها ، ترانزیستورها و موسفت ها به حیطه صنعت محدودیت فرکانس و عدم تغییر آن ، در تغذیه کوره ها مرتفع شد .

از لحاظ سیستم قدرت میتوان سیستمهای القایی را به چهار دسته اساسی تقسیم نمود :


الف ) سیستمهای منبع (Supply Systems)
در این سیستمها که فرکانس کار آنها بین 50 تا 60 هرتز و 150 تا 540 هرتز می باشد احتیاجی به تبدیل فرکانس نیست و با توجه به فرکانس کار ،‌ عمق نفوذ جریان زیاد بوده و حدود 10 تا 100 میلیمتر می باشد . همچنین مقدار توان لازم تا حدود چندین صد مگا وات نیز میرسد .

ب ) سیستمهای موتورـژنراتور (Motor-Generator Systems)
فرکانس این سیستمها از 500 هرتز تا 10 کیلو هرتز می باشد . در این سیستمها تبدیل فرکانس لازم بوده و این عمل بوسیله ژنراتورهای کوپل شده با موتورهای القایی صورت می پذیرد . همچنین در این سیستمها توان به وسیله ماشینهای 500 کیلو وات تامین میگردد و برای بدست آوردن توانهای بالاتر ،‌ از سری کردن ماشینها استفاده میشود . عمق نفوذ در این سیستمها به خاطر بالاتر بودن فرکانس نسبت به سیستمها منبع ، کمتر بوده و در حدود 1 تا 10 میلیمتر است .

ج ) سیستمهای مبدل نیمه هادی (Solid-State Converter Systems)
در این سیستمها فرکانس در محدوده HZ 500 تا KHZ 100 بوده و تبدیل فرکانس به طرق گوناگونی صورت میپذیرد . در این سیستمها از سوئیچهای نیمه هادی استفاده میشود و توان مبدل بستگی به نوع کاربرد آن تا حدود MW 2 میتواند برسد .

د ) سیستمهای فرکانس رادیویی (Radio-Frequency System)

فرکانس کار در این سیستم در محدوده KHZ 100 تا MHZ 10 می باشد . از این سیستمها برای عمق نفوذ جریان بسیار سطحی، در حدود 1/0 تا 2 میلیمتر استفاده می گردد و در آن از روش گرمایی متمرکز با سرعت تولید بالا استفاده میگردد


ارسال شده در توسط vahdi

استفاده از روترها در شبکه به امری متداول تبدیل شده است . یکی از دلایل مهم گسترش استفاده از روتر ، ضرورت اتصال یک شبکه به چندین شبکه دیگر ( اینترنت و یا سایر سایت ها ی از راه دور ) در عصر حاضر است . نام در نظر گرفته شده برای روترها ، متناسب با کاری است که آنان انجام می دهند : " ارسال داده از یک شبکه به شبکه ای دیگر " . مثلا" در صورتی که یک شرکت دارای شعبه ای در تهران و یک دفتر دیگر در اهواز باشد ، به منظور اتصال آنان به یکدیگر می توان از یک خط leased ( اختصاصی ) که به هر یک از روترهای موجود در دفاتر متصل می گردد ، استفاده نمود . بدین ترتیب ، هر گونه ترافیکی که لازم است از یک سایت به سایت دیگر انجام شود از طریق روتر محقق شده و تمامی ترافیک های غیرضروری دیگر فیلتر و در پهنای باند و هزینه های مربوطه ، صرفه جوئی می گردد .
انواع روترها
روترها را می توان به دو گروه عمده سخت افزاری و نرم افزاری تقسیم نمود:
• روترهای سخت افزاری : روترهای فوق ، سخت افزارهائی می باشند که نرم افزارهای خاص تولید شده توسط تولید کنندگان را اجراء می نمایند (در حال حاضر صرفا" به صورت black box به آنان نگاه می کنیم ).نرم افزار فوق ، قابلیت روتینگ را برای روترها فراهم نموده تا آنان مهمترین و شاید ساده ترین وظیفه خود که ارسال داده از یک شبکه به شبکه دیگر است را بخوبی انجام دهند . اکثر شرکت ها ترجیح می دهند که از روترهای سخت افزاری استفاده نمایند چراکه آنان در مقایسه با روترهای نرم افزاری، دارای سرعت و اعتماد پذیری بیشتری می باشند . شکل زیر یک نمونه روتر را نشان می دهد . ( Cisco 2600 Series Multiservice Platform )

 

• روترهای نرم افزاری : روترهای نرم افزاری دارای عملکردی مشابه با روترهای سخت افزاری بوده و مسئولیت اصلی آنان نیز ارسال داده از یک شبکه به شبکه دیگر است. یک روتر نرم افزاری می تواند یک سرویس دهنده NT ، یک سرویس دهنده نت ور و یا یک سرویس دهنده لینوکس باشد . تمامی سیستم های عامل شبکه ای مطرح ،دارای قابلیت های روتینگ از قبل تعبیه شده می باشند .
در اکثر موارد از روترها به عنوان فایروال و یا gateway اینترنت ، استفاده می گردد . در این رابطه لازم است به یکی از مهمترین تفاوت های موجود بین روترهای نرم افزاری و سخت افزاری ، اشاره گردد : در اکثر موارد نمی توان یک روتر نرم افزاری را جایگزین یک روتر سخت افزاری نمود ، چراکه روترهای سخت افزاری دارای سخت افزار لازم و از قبل تعبیه شده ای می باشند که به آنان امکان اتصال به یک لینک خاص WAN ( از نوع Frame Relay ، ISDN و یا ATM ) را خواهد داد .یک روتر نرم افزاری ( نظیر سرویس دهنده ویندوز ) دارای تعدادی کارت شبکه است که هر یک از آنان به یک شبکه LAN متصل شده و سایر اتصالات به شبکه های WAN از طریق روترهای سخت افزاری ، انجام خواهد شد .
مثال 1 : استفاده از روتر به منظور اتصال دو شبکه به یکدیگر و ارتباط به اینترنت
فرض کنید از یک روتر مطابق شکل زیر به منظور اتصال دو شبکه LAN به یکدیگر و اینترنت ، استفاده شده است . زمانی که روتر داده ای را از طریق یک شبکه LAN و یا اینترنت دریافت می نماید ، پس از بررسی آدرس مبداء و مقصد ، داده دریافتی را برای هر یک از شبکه ها و یا اینترنت ارسال می نماید . روتر استفاده شده در شکل زیر ، شبکه را به دو بخش متفاوت تقسیم نموده است .( دو شبکه مجزاء ) . هر شبکه دارای یک هاب است که تمامی کامپیوترهای موجود در شبکه به آن متصل شده اند . علاوه بر موارد فوق ، روتر استفاده شده دارای اینترفیس های لازم به منظور اتصال هر شبکه به آن بوده و از یک اینترفیس دیگر به منظور اتصال به اینترنت ، استفاده می نماید . بدین ترتیب ، روتر قادر است داده مورد نظر را به مقصد درست ، ارسال نماید .

مثال 2: استفاده از روتر در یک شبکه LAN
فرض کنید از یک روتر مطابق شکل زیر در یک شبکه LAN ، استفاده شده است . در مدل فوق ، هر یک از دستگاههای موجود در شبکه با روتر موجود نظیر یک gateway برخورد می نمایند . بدین ترتیب ، هر یک از ماشین های موجود بر روی شبکه LAN که قصد ارسال یک بسته اطلاعاتی ( اینترنت و یا هر محل خارج از شبکه LAN ) را داشته باشند ، بسته اطلاعاتی مورد نظر را برای gateway ارسال می نمایند . روتر ( gateway ) نسبت به محل ارسال داده دارای آگاهی لازم می باشد . ( در زمان تنظیم خصلت های پروتکل TCP/IP برای هر یک از ماشین های موجود در شبکه یک آدرس IP برای gateway در نظر گرفته می شود ) . شکل زیر نحوه استفاده از یک روتر به منظور دستیابی کاربران به اینترنت در شبکه LAN را نشان می دهد :


مثال 3: استفاده از روتر به منظور اتصال دو دفتر کار
فرض کنید ، بخواهیم از روتر به منظور اتصال دو دفتر کار یک سازمان به یکدیگر ، استفاده نمائیم . بدین منظور هر یک از روترهای موجود در شبکه با استفاده از یک پروتکل WAN نظیر ISDN به یکدیگر متصل می گردند . عملا" ، با استفاده از یک کابل که توسط ISP مربوطه ارائه می گردد ، امکان اتصال به اینترفیس WAN روتر فراهم شده و از آنجا سیگنال مستقیما" به شبکه ISP مربوطه رفته و سر دیگر آن به اینترفیس WAN روتر دیگر متصل می گردد . روترها ، قادر به حمایت از پروتکل های WAN متعددی نظیر Frame Relay , ATM , HDLC و یا PPP ، می باشند .

مهمترین ویژگی های یک روتر :
• روترها دستگاههای لایه سوم ( مدل مرجع OSI ) می باشند .
• روترها مادامیکه برنامه ریزی نگردند ، امکان توزیع داده را نخواهند داشت .
• اکثر روترهای مهم دارای سیستم عامل اختصاصی خاص خود می باشند .
• روترها از پروتکل های خاصی به منظور مبادله اطلاعات ضروری خود ( منظور داده نیست ) ، استفاده می نمایند .
• نحوه عملکرد یک روتر در اینترنت : مسیر ایجاد شده برای انجام مبادله اطلاعاتی بین سرویس گیرنده و سرویس دهنده در تمامی مدت زمان انجام تراکش ثابت و یکسان نبوده و متناسب با وضعیت ترافیک موجود و در دسترس بودن مسیر ، تغییر می نماید .


ارسال شده در توسط vahdi

استپ موتور یا موتور پله ای
یک استپ موتور وسیله ای الکتریکی است چرخش زاویه ای گسسته یا پله ای دارد و با اتصال به ضربان هایی در فرکانسی خاص کار می کند. هر ضربان فرستاده شده به موتور سبب حرکت محور موتور تا زاویه ای معین می شود که این زاویه ، زاویه استپینگ (Stepping Angle) نامیده می شود.

شکل 1 ساختمان ساده شده یک استپ موتور "Bifilar" مگنت دائمی را نشان می دهد.

روتور از جنس آهنربای دائمی است و شش دندانه دارد که با فاصله های مساوی و یک در میان در قطب های N و S اطراف روتور قرار دارند.استاتور چهار قطب دارد که هر قطب دارای پیچه ای است که این پیچه از مرکز خروجی V را داراست.
پیچه های روی قطب های مختلف به هم وصلند بطوری که فقط پنج سیم A , B , C , D & +V از موتور خارج می شوند.پیچه با ارسال جریان به سیم +V و خروج آن از یکی از سیمهای دیگر فعال می شود.
سیم پیچ ها در دندانه های استاتور به روشی پیچیده می شوند به طوریکه نتایج زیر حاصل می شود :
اگر سیم B فعال باشد ، قطب 1 شمال و قطب 2 جنوب خواهند بود و اگر سیم A فعال باشد قطب 1 جنوب و قطب 2 شمال می شود.

اگر سیم C فعال باشد قطب 3 شمال و قطب 4
جنوب و اگر سیم D فعال باشد قطب 3 جنوب و در عوض قطب 4 شمال خواهند بود.
عملکرد استپ موتورها براساس این قانون است که وقتی قطبهای مشابه دفع می شوند ، قطبهای مخالف جذب می شوند. اگر سیم پیچ ها در توالی صحیح فعال باشند روتور در مسیر و جهتی معین خواهد چرخید.

شکل 2 نشان می دهدکه روتور هنگامی که پیچه ها با توالی داده شده در جدول 1 فعال اند چگونه می گردد.


همانطور که در شکل 2 مشاهده می شود ، ترتیب القاهای داده شده در در جدول 1 سبب چرخش روتور در جهت عقربه های ساعت می شود.
اگر توالی این القا ها معکوس شود ، جهت حرکت نیز معکوس می شود.



اگر حتی همه القا ها متوقف شده و هیچ جریانی به موتور وارد نشود ، به علت وجود آهنرباهای دائمی در روتور بازهم مقداری جاذبه میان قطب ها و دندانه ها وجود دارد. از این رو حتی هنگامی هم که هیچ تغذیه ای به موتور متصل نیست ، بازهم قدری ((گشتاور نگه دارنده)) در موتور باقی می ماند.
از شکل 2 می توان مشاهده نمود که موتور زاویه استپینگ یا زاویه مرحله 30 درجه دارد و برای کامل کردن یک چرخه به 12 استپ یا مرحله نیاز دارد. تعداد مرحله ها در هر دور در یک موتور استپی با اضافه کردن دندانه های بیشتر روی روتور می تواند افزایش یابد و با اضافه کردن دندانه هایی به دندانه های استاتور ، زاویه استپینگ یا زاویه طی مرحله یک موتور استپی را می توان تا حد 1.8 درجه کوچک کرد به طوری که برای طی یک چرخه دویست مرحله نیاز باشد.
برنامه القای پیچه ها در شکل 2 به القای تک فاز معروف است ; از آنجا که در هر زمان فقط یکی از چهار پیچه فعال است.

در هر مرحله دندانه های روتور دقیقا رد مقابل دندانه های فعال استاتور قرار می گیرند. با این حال راه اندازی موتور با دو پیچه حامل جریان در یک زمان امری ممکن است (القای دو فازی). در این حالت دندانه های روتور خود را در میان دوتا از دندانه های فعال استاتور قرار می دهند. جدول 2 برنامه کاری و موقعیت روتور را برای القای دو فاز و تک فاز نشان می دهد.توجه داشته باشید که زاویه مرحله یا همان Stepping Angle برای دو نوع القا یکی است بجز اینکه موقعیت های روتور با نصف زاویه مرحله تعیین می شوند.
اگر القای تک فاز و دو فاز با هم ترکیب شوند ، یک حالت نیم مرحله (Half Step mode) حاصل می شود. در این حالت تعداد مراحل یا استپ ها در هر چرخه دو برابر است ; به طوری که اگر موتوری در حالت مرحله کامل یا Full – Step برای کامل کردن چرخه به دویست دور نیاز داشته باشد ، در حالت نیم مرحله یا Half – Step به چهارصد دور برای تکمیل آن نیاز دارد. جدول 3 توالی کارکرد برای حالت نیم مرحله نشان می دهد.

استپ موتوری که در بالا شرح داده شد از دو پیچه با در مقابل هم قرار دادن مگنت های همنام در هر قطب استفاده می کند. به این دلیل است که این نوع ، استپ موتور "Bifilar" نامیده می شود.

نتیجه گیری
کارایی و امکانات یک استپ موتور بسیار بیشتر از انواع دیگر الکترو موتورها می باشد. بدین لحاظ که بسیاری مکانیزم ها و حالات مختلف چرخش را می توان از آنها گرفت و همچنین این که کنترل این موتور ها بسیار آسان تر از سایرین است به طوری که عمدتا به وسایل کنترل سرعت اضافی از قبیل ترمز های الکتریکی و مکانیکی نیازی ندارند.
پس بر ماست تا با افزایش دانش خود در مورد این نوع کارامد از موتورهای الکتریکی سعی در استفاده هرچه بیشتر از امکانات آنها کنیم.


ارسال شده در توسط vahdi

گرانش، نیروی جاذبه ایست که بین همه اجرام، به خاطر جرمشان، وجود دارد. جرم یک جسم، مقدار ماده آن است. به دلیل وجود گرانش، جرمی که در نزدیک زمین قرار گیرد به سمت سطح این سیاره سقوط می کند. جرمی که در سطح زمین است نیز نیرویی به سمت پائین را به دلیل گرانش تجربه می کند. ما این نیرو را در بدن خود به شکل وزن تجربه می کنیم. گرانش، گازهای تشکیل دهنده خورشید را در کنار هم نگاه می دارد و باعث می شود سیارات در مدار خود به دور خورشید قرار داشته باشند. مردم، قرنها در مورد گرانش دچار اشتباه بودند. در سال 300 قبل از میلاد مسیح، فیلسوف و دانشمند یونانی، ارسطو، بر اساس یک باور اشتباه فکر می کرد که اجرام سنگین سریعتر از اجرام سبک سقوط می کنند. این باور تا اوایل 1600 میلادی همچنان در بین مردم پابرجا بود تا اینکه دانشمند ایتالیایی، گالیله این باور را اصلاح نمود. گالیله گفت که شتاب همه اجرام به هنگام سقوط با هم برابر است مگر اینکه مقاومت هوا یا نیروهای دیگری بر آن تاثیر بگذارد. شتاب یک جرم، مقدار تغییر در سرعت آن جرم است. بنابراین اگر یک جرم سنگین و یک جرم سبک را همزمان با هم از یک ارتفاع پرتاب کنیم در یک زمان به زمین می رسند. 
? قوانین گرانش نیوتونی ستاره شناسان در گذشته توانستند حرکات ماه و سیارات بر فراز آسمان را اندازه گیری کنند. با این حال تا اوایل سال 1600، هیچیک نتوانستند به درستی این حرکات را توضیح دهند. در آن زمان، ایزاک نیوتون دانشمند انگلیسی، ارتباطی را بین حرکات اجرام سماوی و نیروی جاذبه زمین توصیف نمود. در سال 1665، زمانیکه نیوتون 23 ساله بود، سقوط یک سیب این سوال را در ذهن او ایجاد کرد که نیروی گرانش زمین تا چه فاصله ای تاثیر گذار است. نیوتون کشف خود را در سال 1687 به نام "ریشه های ریاضی در فلسفه طبیعت " تشریح نمود. نیوتون به کمک قوانین حرکت سیارات که توسط ستاره شناس آلمانی یوهانس کپلر کشف شده بود، نشان داد که چگونه نیروی گرانش خورشید با افزایش فاصله کاهش می یابد. او سپس فرض کرد که گرانش زمین نیز به روشی مشابه در فواصل دور کاهش می یابد. نیوتون می دانست که گرانش زمین، ماه را در مدار خود قرار داده است و مقدار گرانش زمین در آن فاصله را اندازه گیری کرد. او به کمک فرض خود، بزرگی گرانش در سطح زمین را به دست آورد. عدد به دست آمده، بزرگی همان نیرویی بود که سیب را به زمین کشاند. قانون گرانش نیوتون می گوید که نیروی گرانش بین دو جرم ارتباط مستقیم با جرم آن دو دارد. یعنی هر چه جرم آنها بیشتر باشد، نیروی گرانش بین آن دو بیشتر است. این قانون همچنین می گوید که نیروی گرانش بین دو جرم ارتباط عکس با فاصله بین دو جرم به توان دو دارد. برای مثال اگر فاصله بین دو جرم دو برابر شود، نیروی گرانش بین آنها یک چهارم می شود. فرمول قانون نیوتون به صورت F=m1m2/d2 می باشد که در آن F نیروی گرانش بین دو جرم، m1 و m2 مقدار مواد دو جرم و d2 فاصله بین دو جرم به توان دو است. تا اوایل 1900، دانشمندان تنها یک حرکت را مشاهده کرده بودند که بر اساس قانون نیوتون قابل توضیح نبود و آن جابجایی کوچکی در مدار عطارد به دور خورشید بود. مدار عطارد، مانند مدار دیگر سیارات بیضی شکل است. خورشید درست وسط این بیضی قرار ندارد. به همین دلیل یک نقطه در این مدار نسبت به دیگر نقاط آن به خورشید نزدیکتر است. اما مکان این نقطه در هر بار گردش سیاره به دور خورشید اندکی تغییر می کند. دانشمندان به این جابجایی، سبقت سیاره می گویند. دانشمندان از قانون نیوتون برای محاسبه این جابجایی استفاده کردند اما نتیجه معادله با آنچه که مشاهده می شود اندکی متفاوت است. 
? تئوری گرانش انیشتین در سال 1915، آلبرت انیشتین، فیزیکدان متولد آلمان، تئوری فضا-زمان-گرانش یا تئوری نسبیت عام را معرفی کرد. تئوری انیشتین طرز فکر دانشمندان به گرانش را به کلی دگرگون کرد. البته این تئوری، قانون نیوتون را رد نکرد بلکه آنرا گسترش داد. در بیشتر موارد، نتیجه ای که از تئوری نسبیت حاصل می شد، اندکی با نتیجه به دست آمده از قانون نیوتون متفاوت بود. برای مثال، انیشتین از تئوری خود برای اندازه گیری سبقت مداری سیاره عطارد استفاده کرد و نتیجه به دست آمده درست برابر با مشاهدات بود. این نخستین آزمون برای تائید تئوری نسبیت عام به حساب آمد. تئوری انیشتین بر اساس دو چیز استوار بود. اول، ماهیتی به نام فضا-زمان و دوم قانونی که به نام اصل هم ارزی شناخته می شود.

? فضا-زمان در ریاضیات پیچیده نسبیت، زمان و فضا از هم جدا نیستند. در عوض، فیزیکدانان به مجموعه ای از زمان و فضای سه بعدی شامل طول، عرض و ارتفاع، فضا-زمان می گویند. انیشتین چنین بیان کرد که ماده و انرژی می توانند با ایجاد انحنا در فضا-زمان، شکل آنرا تغییر دهند و گرانش در واقع تاثیر این انحنا در فضا-زمان می باشد. اصل هم ارزی می گوید که تاثیرات گرانش و تاثیرات شتاب با هم برابرند. برای درک این اصل، تجسم کنید که شما در سفینه ای هستید که به هیچ جرم آسمانی نزدیک نیست. بنابراین سفینه شما تحت تاثیر هیچ گونه نیروی گرانشی قرار ندارد. فرض کنید که سفینه شما به سمت جلو می رود اما شتاب ندارد. به بیانی دیگر، سفینه شما با سرعتی ثابت و در جهتی ثابت حرکت می کند. اگر شما توپی را بیرون بگیرید و رها کنید، توپ سقوط نخواهد کرد. در عوض، در کنار شما معلق خواهد ماند. اما فرض کنید که سفینه شما با افزایش سرعت، شتاب بگیرد. در این هنگام توپ ناگهان به سمت پائین سفینه سقوط خواهد کرد دقیقا مانند زمانیکه تحت تاثیر گرانش قرار بگیرد.
? پیش بینی های نسبیت عام از زمانیکه محاسبه سبقت مداری عطارد، تئوری نسبیت را تائید نمود، مشاهدات زیادی برای بررسی پیش بینی های تئوری نسبیت انجام گرفت. برخی از نمونه ها عبارتند از: انحراف پرتوهای نور و امواج رادیویی، وجود امواج گرانش و سیاه چاله ها و گسترش کائنات. 
? انحراف پرتوهای نور تئوری انیشتین پیش بینی می کرد که گرانش می تواند مسیر پرتوهای نور را هنگامیکه از نزدیک یک جرم سنگین عبور می کنند دچار انحراف کند. انحراف به این دلیل به وجود می آید که اجرام، فضا-زمان را دچار انحنا می کنند. خورشید به قدری سنگین هست که بتواند پرتوهای نور را منحرف نماید و دانشمندان در سال 1919، در حین یک کسوف کامل توانستند این پیش بینی را تائید کنند. 
? ایجاد انحراف و کاستن از سرعت امواج رادیویی این تئوری همچنین پیش بینی کرد که خورشید امواج رادیویی را منحرف کرده و سرعت آنها را کاهش می دهد. دانشمندان با اندازه گیری انحرافی که خورشید در امواج رادیویی ارسال شده توسط کوازارها (اجرام بسیار بسیار قدرتمند که در مرکز برخی کهکشانها قرار دارند) ایجاد می کند این پیش بینی را نیز تائید کردند. محققین تاخیر امواجی که از کنار خورشید عبور می کردند را با ارسال سیگنالهایی بین زمین و فضاپیمای وایکینگ که در سال 1976 به مریخ رسید، اندازه گیری کردند. آن اندازه گیریها همچنان یکی از پر ارزش ترین تائیدیه های تئوری نسبیت به حساب می آیند. 
? امواج گرانشی تئوری نسبیت نشان داد که اجرام سنگینی که به دور یکدیگر در چرخشند، امواجی را به نام امواج گرانشی منتشر می کنند. از سال 1974، دانشمندان حضور این امواج را به طور غیر مستقیم با مشاهده اجرامی به نام تپ اختر دوتایی تائید کرده اند. تپ اختر دوتایی نوعی ستاره نوترونی است که با سرعت بسیار زیاد به دور جرمی مشابه خود اما کوچکتر و غیر قابل مشاهده می چرخد. ستاره نوترونی متشکل از سلولهای نوترون، ذره ای که به طورمعمول تنها در هسته اتمها یافت می شود، می باشد. یک تپ اختر ، دو موج رادیویی را در دو جهت مخالف هم منتشر می کند. با چرخش ستاره حول محور خود، موجها مانند پرتوهای نور یک نورافکن در فضا پخش می شوند. اگر یکی از این امواج رادیویی به زمین برسد، تلسکوپهای رادیویی این موج را به صورت یک سری پالس دریافت می کنند. با مشاهده دقیقتر تغییرات پالسهای یک تپ اختر دوتایی، دانشمندان می توانند دوره مداری (زمانیکه دو ستاره یک دور کامل در مدار خود می زنند) آن را تخمین بزنند. مشاهدات تپ اختر دوتایی PSR 1913+16 نشان داد که دوره مداری آن کاهش می یابد و ستاره شناسان این مقدار کاهش را اندازه گیری کردند. دانشمندان همچنین از معادلات نسبیت عام برای محاسبه مقدار کاهش دوره مداری، در صورت انتشار امواج گرانشی، استفاده کردند. مقدار محاسبه شده دقیقا برابر با مقدار اندازه گیری شده بود. 
? سیاهچاله ها تئوری انیشتین حضور اجرامی به نام سیاهچاله ها را پیش بینی کرد. سیاهچاله منطقه ای در فضا است که نیروی گرانش آن اجازه گریز به هیچ چیز حتی پرتوهای نور را نمی دهد. محققان مدارک مستدلی در دست دارند که نشان می دهد اغلب ستارگان سنگین در نهایت به سیاهچاله تبدیل می شوند و بیشتر کهکشانها دارای یک سیاهچاله عظیم الجثه در مرکز خود می باشند. 
? گسترش کائنات انیشتین در سال 1917، مقاله نسبیت عام را که مطالعه ای بر کل کیهان بود ارائه نمود. بر اساس این تئوری، کائنات یا در حال گسترش است و یا در حال انقباض. در آن سال دانشمندان مدارک قاطعی برای پذیرفتن هیچ یک از آن دو حالت در دست نداشتند. انیشتین برای پیشگیری از بروز مخالفت دیگران با تئوری نسبیت عام، عاملی به نام ثابت کیهانی را به تئوری خود افزود. ثابت کیهانی، دفع هر ذره در فضا توسط ذرات اطرافش، برای پیشگیری از انقباض جهان می باشد. بالاخره در سال 1929، ستاره شناس آمریکایی ادوین هابل (Edwin Hubble) کشف کرد که کهکشانهای دوردست در حال دور شدن از زمین می باشند و هر چه فاصله کهکشان از زمین بیشتر است سرعت دور شدن آن نیز بیشتر است. کشف هابل نشان داد که دنیا در حال انبساط است. در پی این اکتشاف و تائید آن توسط مشاهدات ستاره شناسان دیگر، انیشتین ثابت کیهانی را از تئوری خود حذف نمود و آن را بزرگترین اشتباه خود توصیف کرد. کشف گسترش کائنات به همراه مشاهدات دیگر، منجر به شکل گیری تئوری منشا کائنات یعنی تئوری بیگ بنگ یا مهبانگ شد. بر اساس این تئوری، جهان در پس یک انفجار مهیب آغاز شده است. در آغاز، کل جهانی که ما امروز در این ابعاد و اندازه می بینیم، به کوچکی یک تیله بوده است. سپس مواد شروع به گسترش کرده و این گستردگی تا به امروز ادامه یافته است. 
? انرژی تاریک گرچه انیشتین ثابت کیهانی را بزرگترین اشتباه خود خواند اما شاید این عامل یکی از بزرگترین دستاوردهای مطالعات او باشد. اندازه گیریهایی که در سال 1998 گزارش شدند نشان می دهند که جهان با سرعت بیشتر و بیشتری رو به گسترش است. به علاوه، سرعت گسترش همانطور که در نسبیت عام با ثابت کیهانی محاسبه شده بود، افزایش یافته است. تا قبل از انتشار گزارشات، ستاره شناسان همگی فکر می کردند که از سرعت گسترش به دلیل وجود گرانش بین کهکشانها، کاسته شده است. اندازه گیریها نشان دادند که انفجارهای ابر نواختر در کهکشانهای دور دست، کم نور تر از آن هستند که انتظار می رود بنابراین کهکشانها دورتر از آن هستند که ما تصور می کنیم. اما این کهکشانها فقط در صورتی می توانند چنین فاصله دوری از ما داشته باشند که افزایش سرعت گسترش از گذشته آغاز شده باشد. ستاره شناسان به این نتیجه دست یافته اند که افزایش سرعت گسترش کائنات وابسته به عاملی است که بر خلاف گرانش عمل می کند. این عامل ممکن است ثابت کیهانی و یا چیزی به نام انرژی تاریک باشد. دانشمندان هنوز به یک تئوری برای وجود انرژی تاریک نرسیده اند اما آنها می دانند که چقدر از آن احتمالا در دنیا وجود دارد. مقدار انرژی تاریک کائنات حدودا دو برابر مقدار ماده در آن است. ماده در جهان شامل دو نوع است: ماده مرئی و ماده اسرار آمیزی به نام ماده تاریک. دانشمندان از ترکیب بندی ماده تاریک بی اطلاعند. اما اندازه گیریهای حرکت ستارگان و ابرهای گاز در کهکشانها دانشمندان را وادار به باور نمودن وجود چنین ماده ای کرده است. این اندازه گیریها نشان داده اند که جرم کهکشانها چندین بار بیشتر از جرم اجرام مرئی در آنها است. همه این مشاهدات بیانگر این هستند که مقدار ماده تاریک در کائنات 30 برابر ماده مرئی در آن است. گرانش و سن جهان مشاهدات دیگری که انجام گرفته اند نشان دادند که تئوری نسبیت عام در همه جای کائنات کاربرد دارد. کیهان شناسان عمر جهان را به کمک معادلات نسبیت عام، میزان سرعت گسترش جهان و مقدار تخمینی ماده و انرژی تاریک محاسبه کردند. مقدار محاسبه شده، حدودا 14 بیلیون سال، با نتایج به دست آمده توسط دو روش دیگر محاسبه عمر جهان یعنی محاسبه بر اساس تکامل ستارگان و محاسبه بر اساس نیمه عمر رادیواکتیو ستارگان پیر، همخوانی داشت. تکامل ستارگان همراه با رشد و تکامل ستاره، دمای سطحی و نورانیت آن به روش کاملا شناخته شده ای تغییر می کند. ستاره شناسان می توانند با اندازه گیری دمای سطحی و نورانیت یک ستاره، سن آن را تشخیص دهند. با بهره گیری از این روش، پیر ترین ستاره ای که تا کنون ستاره شناسان پیدا کرده اند حدود 13 بیلیون سال عمر دارد. نیمه عمر رادیو اکتیو بر اساس این واقعیت است که عناصر شیمیایی مشخص، دچار تجزیه رادیواکتیو می شوند. در تجزیه رادیواکتیو، یک ایزوتوپ از یک عنصر به ایزوتوپ عنصری دیگر تبدیل می شود. ایزوتوپ های رادیواکتیو با سرعت مشخص و شناخته شده ای تجزیه می شوند. در سال 2001، دانشمندانی که در شیلی، با تلسکوپ بزرگ رصدخانه اروپای جنوبی کار می کردند، با تکنیک نیمه عمر رادیواکتیو، ستاره ای پیر در کهکشان راه شیری را مورد مطالعه قرار دادند. محققان اورانیوم 238 که شامل 92 پروتون و 146 نوترون است را بررسی کردند. دانشمندان می دانستند که آن ستاره در زمان شکل گیری شامل چه مقدار اورانیوم بوده است. آنها مقدار اورانیوم فعلی آن را اندازه گیری کردند. آنان با استفاده از اطلاعات به دست آمده و محاسبات، عمر این ستاره را به دست آوردند. به احتمال خیلی زیاد آن ستاره 5/12 بیلیون سال عمر دارد، بنابراین عمر جهان احتمالا از آن بیشتر است. محاسبه عمر چندین ستاره پیر دیگر نیز تقریبا به همین نتیجه ختم شد.


ارسال شده در توسط vahdi

امواج فروسرخ یا به عبارتی اشعه مادون قرمز در علم فیزیک به قسمی از طیف پرتوهای الکترومغناطیسی اطلاق می‌گردد که دامنه طول موج آنها از بالای نور سرخ مرئی آغاز و تا امواج غیرمرئی ریزموج یا مایکروویو را دربر می‌گیرند.
* دامنه طول اینگونه امواج تقریبا بین 1 میلی متر تا 750 نانومتر (معادل 7800-1500000 آنگستروم )متغیر بوده بنابراین کوتاه تر از امواج رادیوئی مرسوم طبقه بندی می‌گردند.
* فرکانس ( تواتر) امواج فروسرخ حداکثر 400 تریلون بار در ثانیه(در محدوده بسیار نزدیک به رنگ سرخ قابل دید) تا 800 بیلیون بار در ثانیه (نزدیک به محدوده پایانی پرتوهای مایکروویو) اندازه گیری می‌گردند.
* اصطلاح تابش فروسرخ گرته‌برداری از نام انگلیسی آن یعنی Infrared است. واژه انگلیسی Infrared از ترکیب دو کلمه لاتین Infra به معنی فرو یا پایین و کلمه انگلیسی red به مفهوم سرخ به وجود می‌آید. وجود طول موجی بلندتر از رنگ سرخ (بلند ترین طول موج در عرصه نور مرئی)و بسامد کمتر و یا کوتاهتراز آن را میتوان علت این نامگذاری دانست.(امواج فرو سرخ طول موجشان فروتر ویا پائین تر از دامنه موج مرئی می‌باشد ).
* تابش فروسرخ رادر فیزیک، عموما با نام دیگری بنام گرمای تابشی و یابه عبارتی از جنس همان گرمائی که از منابعی همانند خورشید، لامپ برقی،ویا حتی از شعله هائی که از یک شمع به اطراف تابیده می‌گردنند، همسان می‌شناسند، زیرا بطور سنتی، چه درست وچه غلط، همه گونه تابش‌های حرارتی رامعمولا به امواج فروسرخ نسبت می‌دهند.
* این فرض بعضا باطل، با توجه به تعاریف فوق، البته دلیل مقبولی برای توجیه اینکه چرامنبعی هما نند خورشید در مجموع، تنها قادر به تامین 50? گرمای مورد نیاز کره خاکی از منابع تابش غیر مرئی است ومابقی آن ازبرکت تابش امواج طیف تابشی مرئی، تامین می‌شوند،نخواهد بود. نکته ظریف در اینجا، بسیار ساده‌است: هر دو نوع تابش حرارتی مرئی و غیر مرئی دارای گرمای تابشی و یا از نوع گرمای تابشی هستند. تنها تفاوت راباید نزدیکی تابش‌ها به سوی طیف مرئی سرخ و یا دوری از آن به سوی امواج ماکروویو، دانست. طیف خورشید در حالت مرئی به سمت سرخ و زرد متمایل است.
* هر چند که اینگونه تابش در برخی دامنه‌های نزدیک فروسرخ از طریق پوست کاملا قابل حس بوده اما اینکه الزاما منبع تابش،حتما مبایستی با تابانیدن نور مرئی از خود،آنراقابل ثبت و حس نماید ، منتفی یا مردود است.
بطور مثال ،اشعه مادون قرمز با طول موج کوتاهتر از 1?5 میکرومتر از پوست می‌گذرند و بقیه جذب شده و تولید حرارت می‌کنند، اما دیده نمی‌شوند. همانگونه که می‌دانیم ، یک اطوی برقی باوجود اینکه هیچگاه ازشدت داغی به سرخی نگرایده و در تاریکی قابل رویت نمی‌باشد وایضا حرارت قسمت‌های مختلف بدن یک گربه در یک غروب پائیزی، همچنان می‌توانند نمونه هائی از منابع تابش فروسرخ را به ما بنمایانند.

خلاصه: تابشهای فروسرخ معمولااز طریق ابزار مرسوم از قبیل دوربین‌های چشمی و عکاسی معمولی، عینک‌های آفتابی یا لنزی متعارف، چشمان غیرمسلح انسان وبسیاری دیگر ازموجودات، قابل دیدن نمی‌باشند .
سپس می‌توانید تصویر یک سگ کوچک را که در طیف رده بندی تابشی نیمه-فروسرخ یا حرارتیدر رده بندی تابش‌ها گرفته شده‌است، ملاحظه کنید. توجه شمارا به دو نکته در این عکس جلب می‌کنم:

* - رنگها غیرواقعی جلوه میکنند.
- عکس مذکور با فیلم حساس به IR گرفته شده‌است.

پس ّبه گونه‌ای ساده تر میتوان گفت که هر چیزی یا موجودی ویادستگاهی ،برای نمونه از یک رادیاتور معمولی شوفاژ تا یک موجود زنده ، که بتواند گرمائی غیر مرئی و بیش از گرمای محیط اطراف خود ایجاد نماید، منبع فرآوری انرژی حرارتی و یا به تعریف دیگر تابنده امواج فروسرخ شناخته می‌شود. بعدا ملاحظه خواهید نمود که تمامی موارد یاد شده در بالا،تنها دردامنه‌های متفاوتی از رده بندی تابش ها (جدول زیر ) با هم تفاوت دارند.
جهت سهولت در تعاریف، طیف تابشی فروسرخ معمولا به زیرمجموعه هائی به شکل زیر هم نامگذاری می‌شود:
* رده بندی تابش‌ها:
*-نزدیک فروسرخ با دامنه طول موج 0?75-1?4 میکرومتر
-موج کوتاه فروسرخ با دامنه طول موج 1?4-.03 میکرومتر
-موج متوسط فروسرخ با دامنه طول موج 3?0-8?0 میکرومتر
-موج بلند فروسرخ با دامنه طول موج 8?0-15 میکرومتر
-موج بسیار دور فروسرخ Far IR
با دامنه طول موج 15-1000 میکرومتر
هت رویت طیف‌های الکترو مغناطیسی
* منابع تولید تابشهای فروسرخ
منبع طبیعی بزرگترین منبع تابشهای فروسرخ ، خورشید است. میزانی از نور آفتاب که به ما می‌رسد، دارای اشعه مادون قرمز کوتاه است، زیرا پرتوهای تابشهای فروسرخ بلند آن قبلا درلایه‌های مختلف جو (هوا) جذب شده‌اند.
*منابع مصنوعی:اجسام ملتهب
بهترین منابع مصنوعی برای امواجفروسرخ ، اجسام ملتهب می‌باشند که طول موج آنها بر حسب درجه حرارت تغییر می‌کند. اگر بخواهیم اشعه مادون قرمز خالص داشته باشیم، باید نور این قبیل منابع مصنوعی را بوسیله شیشه‌هایی که در ترکیب آنها ید و یا اکسید منگنز (MnO) وجود دارد، از صافی بگذرانیم. این نوع صافیها طیف مرئی را جذب کرده و فقط اشعه فروسرخ را عبور می‌دهند.
* عبور جریان الکتریکی از مقاومتها
روش دیگر که هم سهل وهم عملی است، عبور جریان الکتریکی از مقاوتهای فلزیست، بطوری که این مقاوتها سرخ شوند. این مقاومتها غالبا از آلیاژهای آهن و نیکل ساخته شده‌اند. چراغ با مفتول زغال چراغهایی که مفتول آنها از زغال چوب ساخته شده‌است، نیز به نسبت زیاد امواجفروسرخ دارند. در این نوع چراغ نسبت اشعه کوتاه بین 1 میکرومتر و 7 میکرومتر خیلی کم ، ولی نسبت اندازه گیری اشعه مادون قرمز بلند آن زیاد است.
چراغ بخار جیوه نیز، امواجفروسرخ با طول موج کوتاه بین 0?92 میکرومتر و 1?3 میکرومتر تولید می‌کند، ولی نسبت اشعه حاصله نسبت به سایر منابع کمتر است.
* اندازه گیری امواج فروسرخ
برای اندازه گیری امواجفروسرخیا اشعه مادون قرمز از جذب انرژی حرارتی آن استفاده می‌نمایند، یعنی اشعه را به جسمی می‌تابانند که بتواند کلیه انرژی را جذب کند و آنگاه مقدار حرارت تولید گشته در جسم مزبور را ، اندازه می‌گیرند.
3*- کاربردها
3-1دید در شب
* -دستگاه دید در شب وسیله‌ای برای دیدن در شرایط کمبود یا نبود نور کافی جهت مشاهده اشیاء است. دستگاه مذکور قادر به شناسائی اشیاء گرمتر نسبت به محیط، توسط ثبت سایه هائی متفاوت از اجسام سردتر از هدف در رده‌های متفاوت بوده که به نیروهای پلیس و نظامی ، امکان شناسائی انسان و یا اتوموبیل و غیره را به راحتی فراهم می‌سازد.
یک تفنگ مجهز به دوربین دید در شب، بعنوال مثال، از آنجائی که تابش فروسرخ غیرمرئی بوده، اما رفتاری عینا مانند نور مرئی را از خود نشان می‌دهد، پس بنابراین توسط بازتاب و کنترل آن می‌توان به مثابه یک ابزار کاراء در درگیری‌های جنگی یا پلیسی از خواص آن بهره مند شد.
چنین سلاحی به یک منبع تابش فروسرخ و یک عامل بازتاب امواج برگشتی ، در راستای هدف گیریست.
*امواج بازیافتی از هدف و یا به عبارت دیگر انرژی بازگشت شده، دریافت و توسط یک سامانه الکترونیکی بصورت یک صحنه مرئی در معرض دید تک تیرانداز ( بعنوان تنها تاظر صحنه)، قرار می‌گیرد.
* 3-2اندازه گیری حرارت از راه دور
*سنداژ زمین از راه دور (آکموترا) یا دید در شب بعلاوه رصد اجرام آسمانی
* 3-3تصویر برداری / نقشه برداری
*عکسبرداری توسط دوربین‌های حساس به انواع تابش فروسرخ با هواپیما ، بالن، سفینه‌ها وغیره
* 3-4
سنداژ زمین از راه دور (آکموترا) یا دید در شب
عکسبرداری هواپیمایی حرارتی فروسرخ امکان نقشه‌برداری از موقعیت و حالتهای معین خطوط لوله و از جمله خطوط لوله انتقال نفت و گاز را اعم از باز و زیرزمینی فراهم می‌کند. هر دوی آنها از حرارتی بالاتر از محیط اطراف برخوردارند و لذا حتی در صورت ساخت زیرزمینی خطوط لوله، تفاوتهای حرارتی کافی برای ثبت آنها به وجود می‎آیند. از ارتفاعات پایین با دقت 2/0-1/0 متری انجام بگیرد. عکسهایی که با این کیفیت گرفته می‎شوند، نشانه‌های بارز خط لوله، قسمتهای وجود آبهای زیرزمینی دور لوله (محل وجود خطر بالای زنگ‌زدگی و فرسایش فلز) و محل ایجاد دهانه‌بند هیدراتی به وضوح دیده می‌شود. امکان ریزش محصولات به گونه‌های مختلف جلوه می‎کنند.
در خطوط لوله انتقال گاز به علت انبساط آدبیتیک گاز این قسمتها بسیار سرد نشان داده می‎شوند در حالی که در خطوط لوله انتقال نفت این قسمتها از محیط اطراف گرم‌تر هستند. قسمتهای ریزش نفت در عکسها دقیقاً نشان داده می‎شوند چرا که قدرت بازتاب محل آلوده شده تغییر می‌کند. عکسبرداری هواپیمایی حرارتی فروسرخ امکان تشخیص نه تنها احتمال وقوع سانحه بلکه آن قسمتهای خط لوله را می‎دهد که در آستانه سانحه قرار دارند (یعنی کشف سوراخها، جاخالی فراز گاز و غیره
* 3-5مخابرات
-انتقال امواج صوتی و تصویری از باندهای پائین تابش فروسرخ (مایکروویو) نزدیک امواج رادیویی جهت تقویت و تکرار پایداری از مبداء تا به مقصد.
* 3-6گرمادهی

+ -گرما دهی به افراد در سوناها
+ -آب کردن یخ روی بال‌ها و یا سایر اجزاء وادوات پروازی هواپیماها
+ -گرم کردن غذا و سایر خوراکی‌ها بدون گرم کردن هوای اطراف مایکرفر
+ -خشکبار سازی میوه جات در یک دهم زمان متعارف، بدون آلودگی

* 3-7ارتباطات نزدیک بصورت‌های مختلف دیجیتال
*
انتقال اطلاعات ازطریق تابش فروسرخ در دامنه کوتاه -فروسرخ بین رایانه‌ها و لوازم جانبی دیجیتالی که از استاندارد IrDA برخوردارند، قابل انجام است.

دستگاه‌های متناسب با The Ifra Red Data Association ) IrDA )لوازمی اند که قادرند با استفاده ازدیود‌های نور افشان LEDs توسط لنز‌های پلاستیکی، امواج بسیار باریک فروسرخ را منتشر سازند.
2-6طیف سنجی
این تصویر با رنگ آمیزی کاذب با تلسکوپ فضایی فروسرخ اسپیتزر گرفته شده‌است و خوشه کروی را نشان می‌دهد که تا چندی پیش در صفحه غبارآلود راه شیری پنهان مانده بود. نوار قرمز رنگ پشت هسته خوشه یک ابر غبار است که احتمالاً نشان دهنده برهمکنش خوشه و صفحه پر گاز و غبار راه شیری است.شاید هم این ابر به طور تصادفی در خط دید اسپیتزر قرار گرفته‌است.

درست هنگامی که منجمان فکر می‌کردند آخرین فسیل‌های راه شیری را هم پیدا کرده‌اند یکی دیگر از آنها در نزدیکی خودمان پیدا شد. صفحه کهکشان جای مناسبی برای کشف ناشناخته هاست. زیرا توده‌های غبار و گاز موجود در صفحه اجازه گذر اجرام پشتی را در نور مریی نمی‌دهند اما آنها در نور فروسرخ شفافند. به کمک رصد‌های بعدی که با رصدخانه فروسرخ دانشگاه ویومینگ انجام شد فاصله این خوشه کروی از ما 9000 سال نوری تعیین شد - نزدیکتر از بسیاری از خوشه‌های دیگر - با جرمی معادل 300 هزار برابر خورشید. این خوشه در صورت فلکی عقاب جای دارد و اندازه ظاهری آن از زمین مانند دانه برنجی دیده می‌شود که آن را به فاصله یک دست کشیده از چشمان خود نگه داشته‌اید.

* 3-8سامانه‌های فیزولوژیک/ بیولوژیکی
* تابش امواج فروسرخ سبب گرم شدن پوست و نسج سلولی زیر جلدی شده وممکن است در پوست سوختگی‌های نسبتا شدیدی ایجاد نمایند.اگر تابش امواج فروسرخ را به مقدار مناسب بکار برند، در نتیجه اتساع رگهای زیر پوست ، سبب تسهیل اعمال فیزیولوژیک پوست می‌شود و حتی از راه عکس‌العمل پوستی در بهبودی حال عمومی نیز می‌تواند موثر واقع شود.
این تابش خاصیت تسکین درد را نیز دارد که علت آن همان اتساع عروق و بهتر انجام گرفتن عمل رفع سموم و تغذیه بافتها است.


ارسال شده در توسط vahdi

سلاح تازه ای که ساخت آن بسیار ساده و تأثیر آن کاملاً گسترده است ، نگرانی هایی را برای دانشمندان و دولتمردان بوجود آورده است . به نوشته هفته نامه علمی نیوساینتیست این سلاح مؤثر « بمب الکترو مغناطیسی » نام دارد که اساس و عصاره آنها چیزی نیست جز یک پرتو شدید و آنی از موجهای رادیویی یا مایکروویو که قادر است همه مدارهای الکتریکی را که در سر راهش قرار گیرد ، نابود سازد . در دورانی که بافت و ساخت تمامی جوامع تا حدود بسیار زیادی به دستاوردهای علمی از نوع الکترونیکی وابسته است و همه امور از تجهیزات بیمارستانها تا شبکه های مخابراتی و از رایانه های بانکها و مؤسسات بزرگ مالی یا نظامی تا دستگاههای نظارت و مراقبت ، نحوه کار ماشینها و ادوات صنعتی همگی متکی به ساختارهای الکترونیک هستند ، کاربرد بمبهای الکترو مغناطیس می تواند سبب فلج شدن روند زندگی در مناطق بزرگ مسکونی شود . به اعتقاد برخی کارشناسان به نظر می رسد کشورهای پیشرفته پیشاپیش چنین سلاحی را تکمیل کرده اند و حتی برخی بر این باورند که ناتو در جریان جنگ علیه صربستان از این قبیل بمبها برای تخریب دستگاههای رادار صربها بهره گرفته است . توجه به بمبهای الکترو مغناطیس حدود نیم قرن قبل مطرح شد . متخصصان در آن هنگام به این نکته توجه کردند که اگر بمبی هسته ای منفجر شود ، امواج الکترومغناطیسی که در اثر انفجار پدید می آید تمامی مدارهای الکترونیک را نابود می سازد . اما مسیله این بود که به چه ترتیب بتوان موج انفجار را ایجاد کرد بدون آنکه نیاز به انجام یک انفجار هسته ای باشد ؟

دانشمندان می دانستند که کلید حل این مسیله در ایجاد پالسهای ( تپ های ) الکتریکی که با عمر بسیار کوتاه و قدرت زیاد نهفته است . اگر اینگونه پالسها به درون یک آنتن فرستنده تغذیه شوند ، امواج الکترومغناطیس قدرتمندی در فرکانسهای ( بسامد ) مختلف از آنتن بیرون می آیند ، هر چه فرکانس موج بالاتر باشد ، امکان تأثیرگذاری آن بر مدارهای الکترونیک دستگاهها بیشتر خواهد شد . بزودی این نکته روشن شد که مناسب ترین امواج الکترومغناطیس برای ساخت بمبهای الکترومغناطیس امواج با فرکانس در حدود گیگا هرتز است . این نوع امواج قادرند به درون انواع دستگاههای الکترونیک نفوذ کنند و آنها را از کار بیندازند . برای تولید امواج با فرکانس گیگاهرتز نیاز به تولید پالسهای الکترونیکی بود که تنها 100 پیکو ثانیه تدوام پیدا کنند . یک شیوه تولید این نوع پالسها استفاده از دستگاهی به نام « مولد ژنراتور مارکس » بود . این دستگاه عمدتاً متشکل است از مجموعه بزرگی از خازنها که یکی پس از دیگری تخلیه می شوند و نوعی جریان الکتریکی موجی شکل بوجود می آورند . با گذراندن این جریان از درون مجموعه ای از کلیدهای بسیار سریع می توان پالسهایی با دوره زمانی 300 پیکوثانیه تولید کرد . با عبور دادن این پالسها از درون یک آنتن ، امواج الکترومغناطیسی بسیار قوی تولید می شود . مولدهای مارکس سنگین هستند اما می توانند پشت سرهم روشن شوند تا یک سلسله پالسهای قدرتمند را به صورت متوالی تولید کنند . این نوع مولدها هم اکنون در قلب یک برنامه تحقیقاتی قرار دارند که بوسیله نیروی هوایی آمریکا کانزاس در دست اجراست . هدف این برنامه جای دادن مولدهای مارکس روی هواپیماهای بدون خلبان یا در درون بمبها و موشکهاست تا از این طریق نوعی « میدان مین الکترومغناطیس » برای مقابله با دشمن ایجاد شود . اگر هواپیما یا موشک دشمن از درون این میدان مین الکترومغناطیس عبور کند ، بلافاصله نابود خواهد شد . اگر لازم باشد تنها یک انفجار عظیم به انجام رسد ، به دستگاهی نیاز است که بتواند یک پالس الکترونیکی بسیار قدرتمند را بوجود آورد ؛ این کار را می توان با استفاده از مواد منفجره متعارف نظیر « تی . ان . تی » انجام داد . دستگاهی که این عمل را به انجام می رساند ، « متراکم کننده شار » نام دارد . در این دستگاه از انفجار اولیه یک ماده منفجره متعارف برای فشرده کردن یک جریان الکتریکی و میدان الکترومغناطیسی تولید شده بوسیله آن استفاده می شود. زمانی که این جریان فشرده شد ، به درون یک آنتن فرستاده می شود و یک موج الکترومغناطیس بسیار قدرتمند از آنتن بیرون می آید . نیوساینتیست می افزاید : طرح تکمیل دستگاههای متراکم کننده شار از سوی نیروی هوایی آمریکا در ایالت نیو مکزیکو در دست تکمیل است . از جمله طرحهایی که برای کاربرد این دستگاه در نظر گرفته شده ، جای دادن آنها در بمبهایی است که از هواپیما به پایین پرتاب می شود و نصب آنها در موشکهای هوا به هواست . امتیاز بزرگ بمبهای الکترومغناطیس در دو نکته است : نخست آنکه این بمبها مستقیماً جان انسانها را به خطر نمی اندازد و تنها بر دستگاههای الکترونیک اثر می گذارد ؛ و نکته دوم آنکه ساخت آنها بسیار ساده است . بمبهای الکترومغناطیس در صورتی می توانند بالاترین خسارت را وارد آورند که فرکانس امواجشان با فرکانس دستگاههایی که به آنها وارد می شوند یکسان باشد . بنابراین برای ایجاد مصونیت در دستگاههای الکترونیکی که در مراکز حساس کار می کنند ، می توان طراحی مدارها را به گونه ای انجام داد که اولاً میان بخشهای مختلف ، سپرهای محافظتی موجود باشد و ثانیاً در ورودی این قبیل دستگاهها باید صافیها و سنجنده هایی را قرار داد که بتواند علامتهای مورد نیاز و امواج حاصل از انفجار را تشخیص دهند و مانع ورود این قبیل امواج شوند.


ارسال شده در توسط vahdi

در دو دهه اخیر، پیشرفتهای تکنولوژی وسایل و مواد با ابعاد بسیار کوچک به دست آمده است و به سوی تحولی فوق العاده که تمدن بشر را تا پایان قرن دگرگون خواهد کرد ، پیش می رود . برای احساس اندازه های مادون ریز ، قطر موی سر انسان را که یک دهم میلیمتر است در نظر بگیرید ، یک نانومتر صدهزار برابر کوچکتراست 9- 10متر . تکنولوژی و مهندسی در قرن پیش رو با وسایل ، اندازه گیریها و تولیداتی سروکار خواهد داشت که چنین ابعاد مادون ریزی دارند .
درحال حاضر پروسه های در ابعاد چند مولکول قابل طراحی و کنترل است . همچنین خواص مکانیکی ، شیمیایی ، الکتریکی ، مغناطیسی ، نوری و... مواد در لایه ها در حدود ابعاد نانومتر قابل درک و تحلیل و سنجش است .

تکنولوژی درقرن گذشته در هرچه ریزتر کردن دانه های بزرگتر پیشرفت چشمگیری داشت ، بطوریکه به مزاح گفته شد که دیگر کشف ذرات ریز اتمی ((Sub-Atomic)) نه تنها جایزه نوبل ندارد ، بلکه به آن جریمه هم تعلق می گیرد ! تکنولوژی نو درقرن حاضر مسیر عکس را طی می کند . یعنی مواد مادون ریز را باید ترکیب کرد تا دانه های بزرگتر کارآمد به وجود آ ورد .
درست همان روشی که در طبیعت برای تولید کردن حاکم است . مجموعه های طبیعی ، ترکیبی از دانه های مادون ریز قابل تشخیص با خواص مشابه و یا متفاوت با اندازه های در حدود نانو است .
اثر تحقیقات در فناوریهای مادون ریز هم اکنون در درمان بیماریها و یا دست یافتن به مواد جدید به ظهور رسیده است . موارد بسیاری در مرحله تحقیقات کاربردی و آزمایشی است .اکنون ساخت رایانه های بسیار کوچکتر و میلیونها بار سریعتر در دستور کار شرکتهای تحقیقاتی قرار دارد .
در بیانی کوتاه نانوتکنولوژی یک فرایند تولید مولکولی است . همانطور که طبیعت مجموعه ها را بطور خودکار مولکول به مولکول ساخته و روی هم مونتاژ کرده است ، ما هم باید برای تولید محصولات جدید ، با این اعتقاد که هرچه در طبیعت تولید شده قابل تولید در آزمایشگاه نیز هست ، نظیر طبیعت راهی پیدا کنیم . البته منظور این نیست که چند هسته از مواد راپیدا کنیم و با رساندن انرژی و خوراک پس از چند سال یک نیروگاه از آن بسازیم که شهری را برق دهد . بلکه برای ترکیب و تکامل خودکار تولیدات مادون ریزکه به نحوی در مجموعه های بزرگتر مصرف دارد ، راهی بیابیم . در اندازه های مادون ریز ، روشها و ابزارآلات متعارف فیزیکی مانند تراشیدن و خم کردن و سوراخ کردن و...جوابگو تیستند .
برای ساختن ماشینهای ملکولی باید روش پروسه های طبیعی را دنبال کرد .
با تهیه نقشه های ساختاری بدن یعنی آرایش ژنها و DNA که ژنم نامیده شده است و به موازات آن دست یافتن به تکنولوژی مادون ریز ، در دراز مدت تحولات بسیاری در هستی ایجاد خواهد شد . تولید مواد جدید ، گیاهان ، جانداران و حتی انسان متحول خواهد شد . اشکالات ساختاری موجودات در طبیعت رفع می شود و با ترکیب و خواص اورگانیک گیاهان و جانوران ، موجودات جدیدی با خواص فوق العاده و شخصیتهای متفاوت بوجود خواهد آمد .آینده علوم و مهندسی که چندین گرایشی Multi- Disciplinary )) است ، به طرف تولید ماشینهای مولکولی سوق داده خواهد شد تا در نهایت بتواند مجموعه های کارآیی از پیوندهای ارگانیک و سایبریک را عرضه نماید .
هستی را به رایانه ( سخت افزار ) و برنامه ( نرم افزار ) که دو پدیده مختلف ولی ادغام شده هستند ، می توان تشبیه کرد . سخت افزار مصداق ماده ( اغلب اتم هیدروژن ) و نرم افزار یا برنامه ، قابلیت نهفته در خلقت آن است .
اتم به نظر ساده و ابتدایی هیدروژن در طی میلیاردها سال با قابلیت نهفته در خود توانسته است میلیونها نوع آرایش مختلف را در هستی بوجود آورد . بشر از بوجود آوردن اساس ماده عاجز است . ولی در برنامه ریزیهای جدید و یافتن اشکال دیگری از آنچه در طبیعت وجود دارد ، پیش خواهد رفت . طبیعت را خواهد شناخت و به اصطلاح ، قفلهای شگفت آور آن را باز خواهد کرد . احتمالا انسان در شرایط مناسبتری از درجه حرارت و فشار که درتشکیل طبیعی مواد مختلف از هیدروژن لازم است ، بتواند اتمهای مورد نباز خود را تولید کند ، سیارات دیگری را در نهایت در اختیار بگیرد و بعید نیست که نواده های دوردست ما بتوانند در نیمه های راه ابدیت در اکثر نقاط جهان هستی و کهکشانها سکنی گزینند.
به احتمال زیاد قبل از پایان هزاره سوم انسانها در بدن خود انواع لوازم مصنوعی و دیجیتالی راخواهند داشت. . از بیماری ، پیری ، درد ستون فقرات ، کم حافظه ای و... رنج نخواهند برد .قابلیت فهم و تحلیل اطلاعات در مغز آنها در مقایسه با امروز بی نهایت خواهد شد . در هزاره های آینده انسانهای طبیعی مانند امروز احتمالا برای مطالعات پژوهشی نگهداری شده و به نمونه های آزمایشگاهی و بطور حتم قابل احترام تبدیل خواهند شد و مردمان آینده از اینهمه درد و ناراحتی که اجداد آنها در هزاره های قبل کشیده اند ، متعجب و متاثر خواهند بود .
اکنون جا دارد همگام با تحولات جدید در مهندسی و علوم ، دانشگاهها و مراکز تحقیقاتی بطور جدی به پژوهشهای تکنولوژی مادون ریز مشغول شوند تا حداقل ما هم بتوانیم مرزهای دانش روز را به نسلهای آینده تحویل دهیم و در تشکلهای جدید هستی سهمی داشته باشیم . باشد هرچه زودتر به خود آییم و عمق شکوهمند و معجزه آسای اندیشه بشررا دریابیم و از کوتاه بینی و افکار فرسوده موروثی فاصله بگیریم . گفته شیخ اجل سعدی در آینده مصداق واقعی تری خواهد داشت :
چه انتظاری باید از نانوتکنولوژی داشت :
این تکنولوژی جدید توانایی آن را دارد که تاثیری اساسی بر کشورهای صنعتی در دهه های آینده بگذارد . در اینجا به برخی از نمونه های عملی در زمینه نانوتکنولوژی که بر اساس تحقیقات و مشاهدات بخش خصوصی به دست آمده است ، اشاره می شود .
انتظار می رود که مقیاس نانومتر به یک مقیاس با کارایی بالا و ویژگیهای منحصربفرد ، طوری ساخته خواهند شد که روش شیمی سنتی پاسخگوی این امر نمی تواند باشد .
• نانوتکنولوژی می تواند باعث گسترش فروش سالانه 300 میلیارد دلار برای صنعت نیمه هادیها و 900 میلیون دلار برای مدارهای مجتمع ، طی 10 تا 15 سال آینده شود .
• نانوتکنولوژی ، مراقبتهای بهداشتی ، طول عمر ، کیفیت و تواناییهای جسمی بشر را افزایش خواهد داد .
• تقریبا نیمی از محصولات دارویی در 10 تا 15 سال آینده متکی به نانوتکنولوژی خواهد بود که این امر ، خود 180 میلیارد دلار نقدینگی را به گردش درخواهد آورد .
• کاتالیستهای نانوساختاری در صنایع پتروشیمی دارای کاربردهای فراوانی هستند که پیش بینی شده است این دانش ، سالانه 100 میلیارد دلار را طی 10 تا 15 سال آینده تحت تاثیر قرار دهد .
• نانوتکنولوژی موجب توسعه محصولات کشاورزی برای یک جمعیت عظیم خواهد شد و راههای اقتصادی تری را برای تصویه و نمک زدایی آب و بهینه سازی راههای استفاده از منابع انرژیهای تجدید پذیر همچون انرژی خورشیدی ارائه نماید . بطور مثال استفاده از یک نوع انباره جریان گذرا با الکترودهای نانولوله کربنی که اخیرا آزمایش گردید ، نشان داد که این روش 10 بار کمتر از روش اسمز معکوس ، آب دریا را نمک زدایی می کند .
• انتظار می رود که نانوتکنولوژی نیاز بشر را به مواد کمیاب کمتر کرده و با کاستن آلاینده ها ، محیط زیستی سالمتر را فراهم کند . برای مثال مطالعات نشان می دهد در طی 10 تا 15 سال آینده ، روشنایی حاصل از پیشرفت نانوتکنولوژی ،مصرف جهانی انرژی را تا 10 درصد کاهش داده ، باعث صرفه جویی سالانه 100 میلیارد دلار و همچنین کاهش آلودگی هوا به میزان 200 میلیون تن کربن شود.
در چند سال گذشته بازارچند میلیارد دلاری برپایه نانوتکنولوژی کسترش یافته اند . برای مثال در ایالات متحده ، IBM برای هد دیسکهای سخت ، یک سری حسگرهای مغناطیسی را ابداع کرده است .
Eastern Kodak و 3M تکنولوژی ساخت فیلمهای نازک نانو ساختاری را به وجود آورده اند . شرکت Mobil کاتالیستهای نانو ساختاری را برای دستگاههای شیمیایی تولید کرده است و شرکت Merck ، داروهای نانوذره ای را عرضه کرده است . تویوتا در ژاپن مواد پلیمری تقویت شده نانوذره ای را برای خودروها و Samsung Electronics در کره ، در حال کار بر روی سطح صفحات نمایش توسط نانولوله های کربنی هستند . بشر درست در ابتدای مسیر قرار دارد و فقط چندین محصول تجاری از نانوساختارهای یک بعدی بهره می گیرند ( نانو ذرات ، نانو لوله ها ، نانو لایه و سوپر لاستیکها ) . نظزیات جدید و روشهای مقرون به صرفه تولید نانوساختارهای دو و سه بعدی از موضوعات مورد بررسی آینده می باشند.
نانو تکنولوژی یا کاربرد فناوری در مقیاس یک میلیونیم متر، جهان حیرت انگیزی را پیش روی دانشمندان قرار داده است که در تاریخ بشریت نظیری برای آن نمی توان یافت. پیشرفتهای پرشتابی که در این عرصه بوقوع می پیوندد، پیام مهمی را با خود به همراه آورده است: بشر در آستانه دستیابی به توانایی های بی بدیلی برای تغییر محیط پیرامون خویش قرار گرفته است و جهان و جامعه ای که در آینده ای نه چندان دور به مدد این فناوری جدید پدیدار خواهد شد، تفاوت هایی بنیادین با جهان مالوف آدمی در گذشته خواهد داشت.
به گزارش ایرنا نانو تکنولوژی نظیر هر فناوری دیگری چونان یک تیغ دولبه است که می توان از آن در مسیر خیر و صلاح و یا نابودی و فنا استفاده به عمل آورد. گام اول در راه بهره گیری از این فناوری شناخت دقیق تر خصوصیات آن و آشنایی با قابلیت های بالقوه ای است که در خود جای داده است. در خصوص نانو تکنولوژی یک نکته را می توان به روشنی و بدون ابهام مورد تاکید قرار داد: این فناوری جدید هنوز، حتی برای متخصصان، شناخته شده نیست و همین امر هاله ابهامی را که آن را در برگرفته ضخیمتر می کند و راه را برای گمانزنی های متنوع هموار می سازد.
کسانی بر این باورند که این فناوری نظیر هیولایی فرانکشتین در داستان مری شلی و یا همانند جعبه پاندورا در اسطوره های یونان باستان، مرگ و نابودی برای ابنای بشر درپی دارد. در مقابل گروهی نیز معتقدند که به مدد توانایی های حاصل از این فناوری می توان عالم را گلستان کرد.
در حال حاضر 450 شرکت تحقیقاتی- تجاری در سراسر جهان و 270 دانشگاه در اروپا، آمریکا و ژاپن با بودجه ای که در مجموع به 4 میلیارد دلار بالغ می شود سرگرم انجام تحقیقات در عرصه نانو تکنولوژی هستند. در این قلمرو اتمها و ذرات رفتاری غیرمتعارف از خود به نمایش می گذارند و از آنجا که کل طبیعت از همین ذرات تشکیل شده، شناخت نحوه عمل آنها، به یک معنا شناخت بهتر نحوه شکل گیری عالم است. به این ترتیب دانشمندانی که در این قلمرو به کاوش مشغولند، به یک اعتبار با ذهن و ضمیر خالق هستی و نقشه شگفت انگیز او در خلقت عالم آشنایی پیدا می کنند، اما از آنجا که دانایی توانایی به همراه می آورد، شناسایی رازهای هستی می تواند توان فوق العاده ای را در اختیار کاشفان این رازها قرار دهد. تحقیق در قلمرو نانو تکنولوژی از اواخر دهه 1950 آغاز شد و در دهه 1990 نخستین نتایج چشمگیر از رهگذر این تحقیقات عاید گردید.
از جمله آنکه یک گروه از محققان شرکت آی بی ام موفق شدند35 اتم گزنون را بر روی یک صفحه از جنس نیکل جای دهند و با کمک این تک اتمها نامی را بر روی صفحه نیکلی درج کنند. محققان دیگر به بررسی درباره ساختارهای ریز موجود در طبیعت نظیر تار عنکبوت ها و رشته های ابریشم پرداختند تا بتوانند موادی نازک تر و مقاوم تر تولید کنند. در این میان ساخت یک نوع مولکول جدید کربن موسوم به باکمینسترفولرین یا کربن- 60 راه را برای پژوهشهای بعدی هموارتر کرد. محققان با کمک این مولکول که خواص حیرت انگیز آن هنوز در درست بررسی است، لوله های موئینه ای در مقیاس نانو ساخته اند که می تواند برای ایجاد ساختارهای مختلف در تراز یک میلیونیم متر مورد استفاده قرار گیرد. بررسی هایی که در ابعاد نانو بر روی مواد مختلف صورت گرفته و خواص تازه ای را آشکار کرده است. به عنوان مثال ذرات سیلیکن در این ابعاد از خود نور ساطع می کنند و لایه های فولاد در این مقیاس از استحکام بیشتری در قیاس با صفحات بزرگتر این فلز برخوردارند.
برخی شرکتها از هم اکنون بهره برداری از برخی یافته های نانوتکنولوژی را آغاز کرده اند. به عنوان نمونه شرکت آرایشی اورال از مواد نانو در محصولات آرایشی خود استفاده می کند تا بر میزان تاثیر آنها بیفزاید. ساخت دیودهای نوری با استفاده از مواد نانو موجب می شود تا 80درصد در هزینه برق صرفه جویی شود. توپهای تنیسی که با کربن 60 ساخته شده و روانه بازار گردیده سبکتر و مستحکمتر از توپهای عادی است. شرکتهای دیگر با استفاده از مواد نانو پارچه هایی تولید کرده اند که با یک بار تکاندن آنها می توان حالت اتوی اولیه را به آنها بازگرداند و همه چین و چروکهایشان را زایل کرد. با همین یک بار تکان همه گردوخاکی که به این پارچه ها جذب شده اند نیز پاک می شوند. نوارهای زخم بندی هوشمندی با این مواد درست شده که به محض مشاهده نخستین علائم عفونت در مقیاس مولکولی، پزشکان را مطلع می سازند.
از همین نوع مواد همچنین لیوانهایی تولید شده که قابلیت خود- تمیزکردن دارند. لنزها و عدسیهای عینک ساخته شده از جنس مواد نانو ضد خش هستند و یک گروه از محققان تا آنجا پیش رفته اند که درصددند با مواد نانو پوششهای مناسبی تولید کنند که سلولهای حاوی ویروسهای خطرناک نظیر ویروس ایدز را در خود می پوشاند و مانع خروج آنها می شود. مهمترین نکته درباره موقعیت کنونی فناوری نانو آن است که اکنون دانشمندان این توانایی را پیدا کرده اند که در تراز تک اتمها به بهره گیری از آنها بپردازند و این توانایی بالقوه می تواند زمینه ساز بسیاری از تحولات بعدی شود. یک گروه از برجسته ترین محققان در حوزه نانوتکنولوژی بر این اعتقادند که می توان بدون آسیب رساندن به سلولهای حیاتی، در درون آنها به کاوش و تحقیق پرداخت. شیوه های کنونی برای بررسی سلولها بسیار خام و ابتدایی است و دانشمندان برای شناخت آنچه که در درون سلول اتفاق می افتد ناگزیرند سلولها را از هم بشکافند و در این حال بسیاری از اطلاعات مهم مربوط به سیالهای درون سلول یا ارگانلهای موجود در آن از بین می رود.
یک گروه از محققان که در گروهی موسوم به اتحاد سیستمهای زیستی گرد آمده اند، سرگرم تکمیل ابزارهای ظریفی هستند که هدف آن بررسی اوضاع و احوال درون سلول در زمان واقعی و بدون آسیب رساندن به اجزای درونی سلول یا مداخله در فعالیت بخشهای داخلی آن است. ابزاری که این گروه مشغول ساخت آن هستند ردیف هایی از لوله ها یا سیمهای بسیار ظریفند که قادرند وظایف مختلفی را به انجام برسانند از جمله آنکه هزاران پروتئینی را که به وسیله سلولها ترشح می شود شناسایی کند. گروههای دیگر از محققان نیز به نوبه خود سرگرم تولید دستگاهها و ابزارهای دیگر برای انجام مقاصد علمی دیگر هستند.
به عنوان نمونه یک گروه از محققان سرگرم تکمیل فیبرهای نوری در ابعاد نانو هستند که قادر خواهند بود مولکولهای مورد نظر را شناسایی کنند. گروهی نیز دستگاهی را دردست ساخت دارند که با استفاده از ذرات طلا می تواند پروتئین های معینی را فعال سازد یا از کار بیندازد. به اعتقاد پژوهشگران برای آنکه بتوان از سلولها در حین فعالیت واقعی آنها اطلاعات مناسب به دست آورد، باید شیوه تنظیم آزمایشها را مورد تجدیدنظر اساسی قرار داد. سلولها در فعالیت طبیعی خود امور مختلفی را به انجام می رسانند: از جمله انتقال اطلاعات و علائم و داده ها میان خود، ردوبدل کردن مواد غذایی و بالاخره سوخت و ساز و اعمال حیاتی. یک گروه از روش تازه ای موسوم به الگوی انتقال ابر - شبکه استفاده کرده اند که ساخت نیمه هادیهای نانومتری به قطر تنها 8 نانومتر را امکان پذیر می سازد. هریک از این لوله های بسیار ریز بالقوه می توانند یک پادتن خاص یا یک اولیگو نوکلئو اسید و یا یک بخش کوچک از رشته دی ان ای بر روی خود جای دهند.
با کمک هر تراشه می توان 1000 آزمایش متفاوت بر روی یک سلول انجام داد. برای دستیابی به موفقیت کامل باید بر برخی از محدودیتها غلبه شود، ازجمله آنکه درحال حاضر برای بررسی سلولها باید آنها را در درون مایعی قرار داد که مصنوعاً محیط زیست طبیعی سلولها را بازسازی می کند، اما یون موجود در این مایع می تواند سنجنده های موئینه را از کار بیندازد. برای رفع مشکل، محققان سلولها را درون مایعی جای می دهند که چگالی یون آن کمتر است. گروههای دیگری از محققان نیز در تلاشند تا ابزارهای مناسب در مقیاس نانو برای بررسی جهان سلولها ابداع کنند. یکی از این ابزارها چنانکه اشاره شد یک فیبر نوری است که ضخامت نوک آن 40 نانومتر است و بر روی نوک نوعی پادتن جا داده شده که قادر است خود را به مولکول مورد نظر در درون سلول متصل سازد. این فیبر نوری با استفاده از فیبرهای معمولی و تراش آنها ساخته شده و بر روی فیبر پوششی از نقره اندود شده تا از فرار نور جلوگیری به عمل آورد. نحوه عمل این فیبر نوری درخور توجه است.
از آنجاکه قطر نوک این فیبر نوری، از طول موج نوری که برای روشن کردن سلول مورد استفاده قرار می گیرد به مراتب بزرگتر است، فوتونهای نور نمی توانند خود را تا انتهای فیبر برسانند، درعوض در نزدیکی نوک فیبر مجتمع می شوند و یک میدان نوری بوجود می آورند که تنها می تواند مولکولهایی را که در تماس با نوک فیبر قرار می گیرند تحریک کند. به نوک این فیبر نوری یک پادتن متصل است و محققان به این پادتن یک مولکول فلورسان می چسبانند و آنگاه نوک فیبر را به درون یک سلول فرو می کنند. در درون سلول، نمونه مشابه مولکول فلورسان نوک فیبر، این مولکول را کنار می زند و خود جای آن را می گرد. به این ترتیب نوری که از مولکول فلورسان ساطع می شد از بین می رود و فضای درون سلول تنها با نوری که به وسیله میدان موجود در فیبر نوری بوجود می آید روشن می شود و درنتیجه محققان قادر می شوند یک تک مولکول را در درون سلول مشاهده کنند.
مزیت بزرگ این روش در آن است که باعث مرگ سلول نمی شود و به دانشمندان اجازه می دهد درون سلول را در هنگام فعالیت آن مشاهده کنند. نانو تکنولوژی همچنین به محققان امکان می دهد که بتوانند رویدادهای بسیار نادر یا مولکولهای با چگالی بسیار کم را مشاهده کنند. به عنوان مثال بلورهای مینیاتوری نیمه هادیهای فلزی در یک فرکانس خاص از خود نور ساطع می کنند و از این نور می توان برای مشخص کردن مجموعه ای از مولکولهای زیستی و الصاق برچسب برای شناسایی آنها استفاده کرد. به نوشته هفته نامه علمی نیچر چاپ انگلستان یک گروه از محققان دانشگاه میشیگان نیز توانسته اند سنجنده خاصی را تکمیل کنند که قادر است حرکت اتمهای روی را در درون سلولها دنبال کند و به دانشمندان در تشخیص نقایص زیست عصبی مدد رساند.
از ابزارهای در مقیاس نانو همچنین می توان برای عرضه مؤثرتر داروها در نقاط موردنظر استفاده به عمل آورد. در آزمایشی که بتازگی به انجام رسیده نشان داده شده است که حمله به سلولهای سرطانی با استفاده از ذرات نانو 100برابر بازده عمل را افزایش می دهد. محققان امیدوارند در آینده ای نه چندان دور با استفاده از نانو تکنولوژی موفق شوند امور داخلی هر سلول را تحت کنترل خود درآورند. هم اکنون گامهای بلندی در این زمینه برداشته شده و به عنوان نمونه دانشمندان می توانند فعالیت پروتئینها و مولکول دی ان ای را در درون سلول کنترل کنند. به این ترتیب نانو تکنولوژی به محققان امکان می دهد تا اطلاعات خود را درباره سلولها یعنی اصلی ترین بخش سازنده بدن جانداران به بهترین وجه کامل سازند.


ارسال شده در توسط vahdi

اورانیومى که از زمین استخراج مى شود، بلافاصله قابل استفاده در نیروگاه هاى تولید انرژى نیست. براى آنکه بتوان بیشترین بازده را از اورانیوم به دست آورد، فرآیندهاى مختلفى روى سنگ معدن اورانیوم صورت مى گیرد تا غلظت ایزوتوپ U235 که قابل شکافت است، افزایش یابد. چرخه سوخت اورانیوم نسبت به سوخت هاى رایج دیگر، از جمله زغال سنگ، نفت و گاز طبیعى به مراتب پیچیده تر و متمایزتر است. چرخه سوخت اورانیوم را چرخه سوخت هسته اى نیز مى گویند. چرخه سوخت هسته اى از دو بخش انتهاى جلویى و انتهاى عقبى Front end) و (Back end تشکیل شده است. انتهاى جلویى چرخه، مراحلى است که منجر به آماده سازى اورانیوم به عنوان سوخت رآکتور هسته اى مى شود و شامل استخراج از معدن، آسیاب کردن، تبدیل، غنى سازى و تولید سوخت است. هنگامى که اورانیوم به عنوان سوخت مصرف شد و انرژى از آن به دست آمد، انتهاى عقبى چرخه آغاز مى شود تا ضایعات هسته اى به انسان و محیط زیست آسیبى نرسانند. این بخش عقبى شامل انباردارى موقتى، بازفرآورى کردن و انبار نهایى است.
• اکتشاف و استخراج
ذخایر طبیعى اورانیوم، سنگ معدن اورانیوم است که بر اساس مقدار قابل استحصال از معدن محاسبه مى شود. با تکنیک ها و روش هاى زمین شناسى، معدن اورانیوم شناسایى مى شود و نمونه هایى از سنگ معدن به آزمایشگاه فرستاده مى شود. در آنجا، محلولى از سنگ معدن تهیه مى کنند و اورانیوم ته نشین شده را مورد بررسى قرار مى دهند تا بفهمند چه مقدار اورانیوم را مى توان از آن معدن استخراج کرد و چقدر هزینه مى برد. اورانیوم موجود در طبیعت معمولاً از دو ایزوتوپ U235 و U238 تشکیل مى شود که فراوانى آنها به ترتیب 71/0 درصد و 28/99 درصد است. هنگامى که معدن شناسایى شد، به سه روش مى توان اورانیوم را استخراج کرد. استخراج از سطح زمین، استخراج از معادن زیرزمینى و تصفیه در معدن. دو روش نخست همانند دیگر روش هاى استخراج فلزات هستند ولى در روش سوم که در ایالات متحده استفاده مى شود، سنگ معدن در خود معدن تصفیه مى شود و اورانیوم به دست مى آید. سنگ معدن اورانیوم معمولاً از اکسید اورانیوم (U3O8) تشکیل شده است و غلظت آن در سنگ معدن بین 05/0 تا 3/0 درصد تغییر مى کند. البته این تنها منبع اورانیوم نیست. اورانیوم در برخى معادن فسفات با منشاء دریایى نیز وجود دارد که البته فراوانى بسیار کمى دارد، به طورى که حداکثر به 200 ذره در یک میلیون ذره مى رسد. از آنجایى که این معادن فسفات مقادیر انبوهى تولید دارند، مى توان اورانیوم را با قیمت معقولى استحصال کرد.

• آسیاب کردن
پس از استخراج سنگ معدن، تکه سنگ ها به آسیاب فرستاده مى شود تا خوب خرد شده، خرده سنگ هایى با ابعاد یکسان تولید شود. اورانیوم توسط اسید سولفوریک از دیگر اتم ها جدا مى شود، محلول غنى شده از اورانیوم تصفیه و خشک مى شود. محصول به دست آمده، کنسانتره جامد اورانیوم است که کیک زرد نامیده مى شود.
• تبدیل

کیک زرد جامد است، ولى مرحله بعد (غنى سازى) از تکنولوژى بخصوصى بهره مى برد که نیازمند حالت گازى است. بنابراین کنسانتره اکسید اورانیوم جامد طى فرآیندى شیمیایى به هگزافلوراید اورانیوم (UF6) تبدیل مى شود. UF6 در دماى اتاق جامد است، ولى در دمایى نه چندان بالا به گاز تبدیل مى شود.

• غنى سازى
براى ادامه یک واکنش زنجیره اى هسته اى در قلب یک رآکتور آب سبک، غلظت طبیعى اورانیوم 235 بسیار اندک است. براى آنکه UF6 به دست آمده در مرحله تبدیل، به عنوان سوخت هسته اى مورد استفاده قرار گیرد، باید ایزوتوپ قابل شکافت آن را غنى کرد. البته سطح غنى سازى بسته به کاربرد سوخت هسته اى متفاوت است. براى یک رآکتور آب سبک، سوختى با 5 درصد اورانیوم 235 مورد نیاز است، درحالى که در یک بمب اتمى، سوخت هسته اى باید حداقل 90 درصد غنى شده باشد. غنى سازى با استفاده از یک یا چند روش جداسازى ایزوتوپ هاى سنگین و سبک صورت مى گیرد. در حال حاضر، دو روش رایج براى غنى سازى اورانیوم وجود دارد که عبارتند از انتشار گاز و سانتریفوژ گاز. در روش انتشار گازى (دیفیوژن)، گاز طبیعى UF6 با فشار بالا از یک سرى سدهاى انتشارى عبور مى کند. این سد ها که غشاهاى نیمه تراوا هستند، اتم هاى سبک تر را با سرعت بیشترى عبور مى دهند. در نتیجه 235UF6 سریع تر از 238UF6 عبور مى کند. با تکرار این فرآیند در مراحل مختلف، گازى نهایى به دست مى آید که غلظت U235 بیشترى دارد. مهم ترین عیب این روش این است که جداسازى ایزوتوپ هاى سبک در هر مرحله نرخ نسبتاً پایینى دارد، لذا براى رسیدن به سطح غنى سازى مطلوب باید این فرآیند را به دفعات زیادى تکرار کرد که این خود نیازمند امکانات زیاد و مصرف بالاى انرژى الکتریکى است و بالتبع هزینه عملیات نیز بسیار افزایش خواهد یافت. در روش سانتریفوژ گاز، گاز UF6 را به مخزن هایى استوانه اى تزریق مى کنند و گاز را با سرعت بسیار زیادى مى چرخانند. نیروى گریز از مرکز موجب مى شود 235Uf6 که اندکى از 238UF6 سبک تر است، از مولکول سنگین تر جدا شود. این فرآیند در مجموعه اى از مخزن ها صورت مى گیرد و در نهایت، اورانیوم با سطحى غنى شده مطلوب به دست مى آید. هر چند روش سانتریفوژ گازى نیازمند تجهیزات گرانقیمتى است، هزینه انرژى آن نسبت به روش قبلى کمتر است. امروزه فناورى هاى غنى سازى جدیدى نیز توسعه یافته است که همگى بر پایه استفاده از لیزر پیشرفت کرده اند. این روش ها که روش جداسازى ایزوتوپ با لیزر بخار اتمى (AVLIS) و جداسازى ایزوتوپ با لیزر مولکولى (MLIS) نام دارند، مى توانند مواد خام بیشترى را در هر مرحله غنى کنند و سطح غنى سازى آنها نیز بالاتر است.


• ساخت میله هاى سوخت
تولید میله سوخت، آخرین مرحله انتهاى جلویى در چرخه سوخت هسته اى است. اورانیوم غنى شده که هنوز به شکل UF6 است، باید به پودر دى اکسید اورانیوم (2 UO) تبدیل شود تا به عنوان سوخت هسته اى قابل استفاده باشد، پودر 2 UOسپس فشرده مى شود و به شکل قرص درمى آید. قرص ها در معرض حرارت با دماى بالا قرار مى گیرند تا به قرص هاى سرامیکى سخت تبدیل شوند. پس از طى چند فرآیند فیزیکى، قرص هایى سرامیکى با ابعاد یکسان حاصل مى شود. حال، متناسب با طراحى رآکتور و نوع سوخت مورد نیاز، این قرص هاى کوچک را دسته دسته کرده و در لوله اى بخصوص قرار مى دهند. این لوله از آلیاژ بخصوصى ساخته شده است که در برابر خوردگى بسیار مقاوم است و در عین حال از رسانایى حرارتى بسیار بالایى برخوردار است. حال میله سوخت آماده شده است و براى استفاده در رآکتور به نیروگاه فرستاده مى شود.

• انتهاى عقبى چرخه سوخت هسته اى: مدیریت زباله هاى هسته اى
در نیروگاه هسته اى هم مثل دیگر فعالیت هاى بشرى، ضایعاتى تولید مى شود که به دلیل حساسیت مضاعف زباله هاى رادیواکتیو، مدیریت این ضایعات باید تحت قوانین و محدودیت هاى خاصى صورت بگیرد. در هر هشت مگاوات ساعت انرژى الکتریکى تولید شده در نیروگاه هسته اى، 30 گرم زباله رادیواکتیو به وجود مى آید. براى تولید همین مقدار برق با استفاده از زغال سنگ پرکیفیت، هشت هزار کیلوگرم دى اکسید کربن تولید مى شود که در دما و فشار جو، 3 استخر المپیک را پر مى کند. مى بینید حجم زباله هاى رادیواکتیو بسیار کمتر است، ولى خطر آنها به مراتب بیشتر است و مراقبت از آنها ضرورى تر و دشوارتر. زباله هاى رادیواکتیو بر اساس مقدار و نوع ماده رادیواکتیو به 3 گروه تقسیم مى شوند:
الف _ سطح پایین: لباس هاى حفاظتى، لوازم، تجهیزات و فیلترهایى که حاوى مواد رادیواکتیو با عمر کوتاه هستند. اینها نیازى به پوشش حفاظتى ندارند و معمولاً فشرده شده یا آتش زده مى شوند و در چاله هاى کم عمق دفن شده و انبار مى شوند.
ب- سطح متوسط: رزین ها، پسمانده هاى شیمیایى، پوشش میله سوخت و مواد نیروگاه هاى برق هسته اى جزء زباله هاى سطح متوسط طبقه بندى مى شوند. اینها عموماً عمر کوتاهى دارند، ولى نیاز به پوشش محافظ دارند. این زباله ها را مى توان درون بتن قرار داد و در مخزن زباله ها گذاشت.
ج _ سطح بالا: همان سوخت مصرف شده رآکتورها است و نیاز به پوشش حفاظتى و سردسازى دارند. مراحل مدیریت این ضایعات عبارتند از:
• انباردارى موقتى
سوخت مصرف شده که از رآکتور خارج مى شود، بسیار داغ و رادیواکتیو است و تشعشع و یون هاى فراوانى را مى تاباند. از این رو باید هم آن را سرد کرد و هم از تابیدن پرتوهاى رادیواکتیو آن به محیط جلوگیرى کرد. در کنار هر رآکتور، استخرهایى براى انبار کردن سوخت مصرف شده وجود دارد. این استخرها، مخزن هایى بتنى مسلح به لایه هاى فولاد زنگ نزن هستند که 8 متر عمق دارند و پر از آب هستند. آب هم میله هاى سوخت مصرف نشده را خنک مى کند و هم به عنوان پوشش حفاظتى در برابر تابش رادیواکتیو عمل مى کند. به مرور زمان، شدت گرما و تابش رادیواکتیو کاهش مى یابد، به طورى که پس از چهل سال، به یک هزارم مقدار اولیه (زمانى که از رآکتور خارج شده بود) مى رسد.
• بازفرآورى و انبار نهایى
3 درصد سوخت مصرف شده در یک رآکتور آب سبک را ضایعات بسیار خطرناک رادیواکتیو تشکیل مى دهد، ولى بقیه آن حاوى مقادیر قابل توجهى U-235،Pu-239 وU-238 و دیگر مواد رادیواکتیو است. این مواد را مى توان با روش هاى شیمیایى از یکدیگر جدا کرد و اگر شرایط اقتصادى و قوانین حقوقى اجازه دهد، مى توان سوخت مصرف شده را براى تهیه سوخت هسته اى جدید بازیافت کرد. کارخانه هایى در فرانسه و انگلستان وجود دارند که مرحله بازفرآورى سوخت نیروگاه هاى کشورهاى اروپایى و ژاپن را انجام مى دهند. البته این کار در ایالات متحده ممنوع است. رایج ترین شیوه بازفرآورى PUREX نام دارد که مخفف عبارت جداسازى اورانیوم و پلوتونیوم است. ابتدا میله هاى سوختى را از یکدیگر جدا مى کنند و در اسید نیتریک حل مى کنند، سپس با استفاده از مخلوطى از فسفات ترى بوتیل و یک حلال هیدروکربن، اورانیوم و پلوتونیوم مصرف نشده را جدا مى کنند و به عنوان سوخت جدید به مراحل تهیه سوخت مى فرستند. ضایعات هسته اى سطح بالا را پس از جداسازى، حرارت مى دهند تا به پودر تبدیل شود. پس از این فرآیند که آهى کردن خوانده مى شود، پودر را با شیشه مخلوط مى کنند تا ضایعات را در محفظه اى محبوس کند. این فرآیند شیشه سازى نام دارد. شیشه مایع براى ذخیره سازى درون محفظه هایى از جنس فولاد ضدزنگ قرار مى گیرند و این محفظه ها را در منطقه اى پایدار (از نظر جغرافیایى) انبار مى کنند. پس از یک هزار سال، شدت تابش هاى رادیواکتیو ضایعات هسته اى به مقدار طبیعى کاهش پیدا مى کند. این نقطه تا به امروز، انتهاى چرخه سوخت هسته اى است.


ارسال شده در توسط vahdi

برای 90% سرماخوردگی ها هیچ چرک خشک کنی لازم نیست. یک بسته قرص سرماخوردگی و یک شربت دیفن هیدرامین کامپاند و یک عدد استامینوفن به همراه استراحت مطلق و نوشیدن مایعات و مصرف ویتامین ث کفایت میکند.

****



2- آمپول دگزامتازون و بتامتازون در سرماخوردگی جنبه ی درمانی ندارند و بیشتر به عنوان کورتون برای سر حال شدن ظاهری بیمار و رضایت از کار پزشک مصرف می شوند!! تنها در مواقعی که مشکل حساسیت است از آن استفاده کنید.

****



3- برعکس تصور خیلی ها اکثر آمپول ها از بعضی از قرص ها و کپسول ها ضعیف تر هستند. یعنی خوردن روزی یک عدد«سفکسیم 400» بسیار قوی تر از 4 تا آمپول پنی سیلین 1 میلیون و 200 است!! در هر صورت چرک خشک کن هایی مثل پنی سیلین و آموکسی سیلین به علت مقاومت ایجاد شده چندان مناسب نیستند و چرک خشک کن هایی مثل سفتریاکسون و سفکسیم به علت قوی بودن بیش از حد بهتر است خط اول درمان نباشند.
چرک خشک کن هایی مثل «آزیترومایسین» پیشنهاد من هستند.

****



4- برای تقویت عمومی بدن زدن آمپول ب کمپلکس، ب 12، نوروبیون و... تقریبا جز در موارد خیلی نادری مثل «بری بری» فایده ی چندانی ندارد. مصرف کپسولی مثل «مولتی
ویتامین مینرال» یا مشابه های خارجی اش بسیار مفیدتر خواهد بود. مطمئن باشید
اکثر ماده ی موثر آمپول چند ساعت بعد در ادرار شما یافت خواهد شد.

****



5- داروهایی مثل ترامادول شاید ظاهرا اعتیاد شما را درمان کنند و انزال شما را هم به عقب بیندازند. اما جالب است بدانید که شما را دچار اعتیادی قوی تر کرده اند و به زودی کلا انزال شما را برطرف خواهند کرد!!


****

6- دکتری که به شما برای سرماخوردگی تان 4 تا آمپول سفتریاکسون می نویسد یا اشتباها تشخیص سوزاک و سیفلیس داده است!! یا خودش نیازمند دکتر روان پزشک است یا با داروخانه ی روبرو قرارداد دارد!

****

7- تزریق سرم به جز وقتی که فشار مریض پایین افتاده یا می خواهیم چند آمپول را از طریق سرم وارد بدنش کنیم یا... جنبه ی درمانی ندارد. شما با خوردن ORS یا
مواد شور و شیرین هم می توانید همان کار را با هزینه و وقت کمتر انجام دهید. می دانید مصرف سرم در ایران چند برابر آمار جهانی است؟!


****

8- در مدت مصرف داروهای واژینال (زنانه) لطفا ارتباط خود را با همسر قطع کنید
یا از کاندوم استفاده کنید. درضمن همسر گرامی هم باید با قرص به همراه شما درمان شود وگرنه پس از اتمام درمان، او دوباره به عنوان ناقل عمل کرده و باز
همان آش و همان کاسه است.


****

9- اگر در اطراف شما کسی آبله مرغان گرفته و شما قبلا مبتلا شده اید اینقدر راحت دور و بر او قدم نزنید. اگر کمی مقاومت بدنتان کاهش پیدا کرده باشد بیماری وحشتناک تری به نام «زونا» منتظر شماست تا رسما دهان شما را صاف کند. خیلی مراقب تر باشید.


****

10- اکثر شامپوهای موجود در بازار اصلا آنقدر بر روی کف سر نمی مانند تا بخواهند اثرات پروتئینه و ویتامینه و... خود را بگذارند. اگر شامپویی به سر شما ساخته است حتی اگر ارزانترین شامپوست آن را حفظ کنید و قدرش را بدانید و از این شاخه به آن شاخه نپرید.


****

11- تصور اینکه هر دارویی با شکل کپسول باید بعد از غذا مصرف شود رسما خنده دار است. بعضی از داروها با مصرف بعد از غذا جذبشان به شدت کاهش یافته و موفق به اثرگذاری نمی شوند. و بعضی از کپسول ها (مثل امپرازول) خودشان جنبه ی درمانی برای دستگاه گوارش داشته و باید حتما قبل غذا مصرف شوند.


****

12- داروی «کلونازپام» به هیچ وجه یک داروی خواب آور نبوده و به عنوان ضد تشنج و سه بار در روز استفاده می شود. اگر دکتری برای شما شبی یک عدد کلونازپام برای
خواب نوشت همانجا بزنید بیرون و دیگر هم به آن پزشک مراجعه نکنید. برای بی خوابی مخصوصا در دوستانی که کمی استرسی هستند (اگر روش های طبیعی و توصیه های رفتاری جواب نداد) «کلردیازپوکساید» را توصیه می کنم.


****

13- گاهی دوستان نسخه پیچ و حتی داروساز ما در صورت تمام کردن دارو یا نزدیک بودن تاریخ انقضای داروهای باد کرده! اقدام به دادن داروهای مشابه می کنند. یادتان باشد شباهت اسامی داروها هیچ ربطی به کاربردشان ندارد. مثلا داروهای مفنامیک اسید (مسکن و ضدالتهاب)، ترانگزامیک اسید (ضد خونریزی مفرط قاعدگی) و فولیک اسید (موثر در کم خونی) فقط اسامی مشابه دارند. خود من در داروخانه ام شاهد جابجایی دو داروی اول به عنوان مشابه بوده ام!!


****

14- اکثر اسهال های معمولی با خوردن مایعات و موادی نظیر نوشابه و آبمیوه و مخصوصا ORS کنترل می شوند. مصرف داروهایی مثل دیفنوکسیلات مخصوصا در اطفال اصلا توصیه نمی شود. همچنین در بسیاری از موارد نیاز به مصرف چرک خشک کن هم نیست


** **


ارسال شده در توسط vahdi
<   <<   6   7      >